Publications

Select a view.
636 publication entries, 326 of them (printed in bold in the list) acknowledge the project support.
Jump to:
Review
Book chapter
Conference organisation
Conference contribution: talk
Conference contribution: poster
Web publication (reviewed)
PhD Thesis
Master/Diploma Thesis
Bachelor Thesis
Web publication
Other
Newspaper article
Press release

Paper (reviewed)

Faugeras, O. and MacLaurin, J.
Asymptotic Description of Neural Networks with Correlated Synaptic WeightsEntropy (2015) 17(7): 4701-4743
doi:10.3390/e17074701
fulltext
Adhikari et al. 2012Adhikari, M.H., Quilichini, P.P., Roy, D., Jirsa, V.K. and Bernard, C. Brain State Dependent Postinhibitory Rebound in Entorhinal Cortex InterneuronsJ Neurosci. (2012) 32(19):6501-6510
doi:10.1523/JNEUROSCI.5871-11.2012
abstract, (fulltext)
Antolik and Bednar 2011Antolik, J. and Bednar, J.A. Development of maps of simple and complex cells in the primary visual cortexFront. Comput. Neurosci. (2011) 5:17
doi:10.3389/fncom.2011.00017
abstract, fulltext
Antolik and Davison 2013Antolik, J. and Davison, A.P.Integrated workflows for spiking neuronal network simulationsFront. Neuroinform. (2013) 7:34
doi:10.3389/fninf.2013.00034
fulltext
Arduin et al. 2013Arduin, P.-J., Fregnac, Y., Shulz, D. E. and Ego-Stengel, V. "Master" Neurons Induced by Operant Conditioning in Rat Motor Cortex during a Brain-Machine Interface TaskThe Journal of Neuroscience (2013) 33(19): 8308-8320
doi:10.1523/JNEUROSCI.2744-12.2013
fulltext
Auffarth et al. 2011Auffarth, B., Kaplan, B. and Lansner, A.Map formation in the olfactory bulb by axon guidance of olfactory neuronsFront Syst Neurosci (2011) 5:84
doi:10.3389/fnsys.2011.00084
fulltext
Bakker et al. 2012Bakker, R., Wachtler, T. and Diesmann, M.CoCoMac 2.0 and the future of tract-tracing databasesFront Neuroinform. (2012) 6: 30.
doi:10.3389/fninf.2012.00030
fulltext
Bakker et al. 2015Bakker, R., Tiesinga, P. and Kötter, R.The Scalable Brain Atlas: Instant Web-Based Acces to Public Brain Atlases and Related ContentNeuroinformatics February (2015) 13(3):353-366
doi:10.1007/s12021-014-9258-x
abstract, fulltext
Baladron et al. 2012Baladron, J., Fasoli, D. and Faugeras, O.Three applications of gpu computing in neuroscienceComputing in Science and Engineering (2012) 14(3):40-47
doi:10.1109/MCSE.2011.119
fulltext
Baladron et al. 2012bBaladron, J., Fasoli, D.,Faugeras, O. and Touboul, J.Mean-field description and propagation of chaos in networks of Hodgkin-Huxley neuronsJournal of Mathematical Neuroscience (2012) 2:10
doi:10.1186/2190-8567-2-10
fulltext, BibTeX
Baudot et al. 2013Baudot, P., Levy, M., Marre, O., Monier, C., Pananceau, M. and Fregnac, Y. Animation of natural scene by virtual eye-movements evokes high precision and low noise in V1 neuronsFront. Neural Circuits (2013) 7:206
doi:10.3389/fncir.2013.00206
fulltext
Baudot et al. 2014Baudot, P., Levy, M., Marre, O., Monier C. Pananceau, M. and Frégnac, Y.Natural scenes evoke high temporal precision and low noise in V1Frontiers in Neural Circuits (2014) (in press)
Bazhenov et al. 2011Bazhenov, M., Lonjers, P., Skorheim, S., Bedard, C. and Destexhe, A.Non-homogeneous extracellular resistivity affects the current-source density profiles of up/down state oscillationsPhil. Trans. R. Soc. A (2011) 369:3802-3819
doi:10.1098/rsta.2011.0119
abstract, fulltext
Bedard and Destexhe 2011Bedard, C. and Destexhe, A.Generalized theory for current-source-density analysis in brain tissuePhys. Rev. E (2011) 84:041909
doi:10.1103/PhysRevE.84.041909
abstract
Bedard and Destexhe 2013Bedard, C. and Destexhe, A. Generalized cable theory for neurons in complex and heterogeneous mediaPHYSICAL REVIEW E (2013) 88: 022709
doi:10.1103/PhysRevE.88.022709
abstract, fulltext
Bedard and Destexhe 2014bBedard, C. and Destexhe, A.Mean-field formulation of Maxwell equations to model electrically inhomogeneous and isotropic mediaJournal of Electromagnetic Analysis and Applications (2014) 6: 296-302
doi:10.4236/jemaa.2014.610029
fulltext
Bedard and Destexhe 2014cBedard, C. and Destexhe, A.Generalized cable formalism to calculate the magnetic field of single neurons and neuronal populationsPhysical Review E (2014) 90(4): 042723
doi:10.1103/PhysRevE.90.042723
abstract
Bedard et al. 2011Bédard, C., Béhuret, S., Deleuze, C., Bal, T. and Destexhe, A.Oversampling method to extract excitatory and inhibitory conductances from single-trial membrane potential recordingsJ Neurosci Meth (2012) 210 (1): 3 - 14
doi:10.1016/j.jneumeth.2011.09.010
fulltext
Behuret et al. 2013Behuret, S., Deleuze, C., Gomez, L., Fregnac, Y. and Bal, T. Cortically-Controlled Population Stochastic Facilitation as a Plausible Substrate for Guiding Sensory Transfer across the Thalamic GatewayPLoS Comput Biol (2013) 9(12): e1003401
doi:10.1371/journal.pcbi.1003401
fulltext
Benjaminsson and Lansner 2012Benjaminsson, S. and Lansner, A.Nexa: A scalable neural simulator with integrated analysisNetwork: Computation in Neural Systems (2012) 23: 254-271
doi:10.3109/0954898X.2012.737087
abstract, fulltext
Berthet and Lansner 2014Berthet, P. and Lansner, A.Optogenetic Stimulation in a Computational Model of the Basal Ganglia Biases Action Selection and Reward Prediction ErrorPLoS ONE (2014) 9(3): e90578
doi:10.1371/journal.pone.0090578
fulltext
Berthet et al. 2012Berthet, P., Hellgren-Kotaleski, J. and Lansner, A.Action selection performance of a reconfigurable Basal Ganglia model with a Hebbian-Bayesian Go-NoGo connectivityFront. Behav. Neurosci. (2012) 6:65
doi:10.3389/fnbeh.2012.00065
fulltext
Bezgin et al. 2012Bezgin, G., Vakorin, V. A., van Opstal, A. J., McIntosh, A. R. and Bakker, R. Hundreds of brain maps in one atlas: Registering coordinate-independent primate neuro-anatomical data to a standard brainNeuroImage (2012) 62(1): 67-76
doi:10.1016/j.neuroimage.2012.04.013
(fulltext)
Blackman et al 2014A. V. Blackman, S. Grabuschnig, R. Legenstein, and P. J. SjöströmA comparison of manual neuronal reconstruction from biocytin histology or 2-photon imaging: morphometry and computer modelingFrontiers in neuroanatomy (2014) : 8
doi:10.3389/fnana.2014.00065
abstract, fulltext
Bogadhi et al. 2013Bogadhi, A., Montagnini, A. and Masson, G.S.Dynamical interaction between retinal and extra-retinal signals in motion integration for smooth pursuitJournal of Vision (2013) 13(13): 5
doi:10.1167/13.13.5
fulltext
Bopp et al. 2014Bopp, R., Maçarico da Costa, N., Kampa, B.M., Martin, K.A. and Roth M.M.Pyramidal cells make specific connections onto smooth (GABAergic) neurons in mouse visual cortexPLoS Biol. (2014) 12(8):e1001932
doi:10.1371/journal.pbio.1001932
abstract, fulltext
Borgelt et al. 2012Borgelt, C., Braune, C., Kötter, T. and Grün, S. New algorithms for finding approximate frequent item setsSoft Computing (2012) 16(5): 903-917
doi:10.1007/s00500-011-0776-2
abstract, fulltext
Brüderle et al. 2011Brüderle, D., Petrovici, M. A., Vogginger, B., Ehrlich, M., Pfeil, T., Millner, S., Grübl, A., Wendt, K., Müller, E., Schwartz, M.-O., de Oliveira, D. H., Jeltsch, S., Fieres, J., Schilling, M., Müller, P., Breitwieser, O., Petkov, V., Muller, L., Davison, A. P., Krishnamurthy, P., Kremkow, J., Lundqvist, M., Muller, E., Partzsch, J., Scholze, S., Zühl, L., Mayr, C., Destexhe, A., Diesmann, M., Potjans, T. C., Lansner, A., Schüffny, R., Schemmel, J. and Meier, K. A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systemsBiological Cybernetics (2011) 104(4-5): 263-296
doi:10.1007/s00422-011-0435-9
abstract, fulltext
Budd and Kisvarday 2012Budd, J.M.L. and Kisvárday, Z.F.Communication and wiring in the cortical connectomeFront. Neuroanat. (2012) 6:42
doi:10.3389/fnana.2012.00042
abstract, fulltext
Budd and Kisvarday 2013Budd, J. and Kisvarday, Z. How do you wire a brain?Front. Neuroanat. (2013) 7:14
doi:10.3389/fnana.2013.00014
fulltext
Buesing 2011Buesing, L., Bill, J., Nessler, B. and Maass, W.Neural Dynamics as Sampling: A Model for Stochastic Computation in Recurrent Networks of Spiking NeuronsPLoS Comput Biol (2011) 7(11): e1002211
doi:10.1371/journal.pcbi.1002211
fulltext
Cessac 2011Cessac, B.Statistics of spike trains in conductance-based neural networks: Rigorous resultsThe Journal of Mathematical Neuroscience (2011) 1:1-42
doi:10.1186/2190-8567-1-8
fulltext, BibTeX
Cessac and Cofre 2013Cessac, B. and Cofre, R.Spike train statistics and Gibbs distributionsJournal of Physiology-Paris (2013) 107(5): 360-368
doi:10.1016/j.jphysparis.2013.03.001
fulltext
Chapuis and Tetzlaff 2014Chapuis, A. and Tetzlaff, T.The variability of tidewater-glacier calving: origin of event-size and interval distributionsJournal of Glaciology (2014) 60 (222): 622-634
doi:10.3189/2014JoG13J215
abstract
Chavane et al. 2012Chavane, F., Sharon, D., Jancke, D., Marre, O., Frégnac, Y. and Grinvald, ALateral spread of orientation selectivity in V1 is controlled by intracortical cooperativityFront. Syst. Neurosci. (2012) 5:4
doi:10.3389/fnsys.2011.00004
abstract, fulltext
Chicharro and Ledberg 2012Chicharro, D. and Ledberg, A.When two become one: the limits of causality analysis of brain dynamicsPLoS One (2012) 7(3):e32466
doi:10.1371/journal.pone.0032466
fulltext
Chossat et al. 2011Chossat, P., Faye, G., Faugeras, O.Bifurcations of hyperbolic planforms Journal of Nonlinear Science (2011) 21(4): 465-498
doi:10.1007/s00332-010-9089-3
abstract, fulltext, BibTeX
Cofré and Cessac 2012Cofré, R. and Cessac, B.Dynamics and spike trains statistics in conductance-based Integrate-and-Fire neural networks with chemical and electric synapsesChaos, Solitons & Fractals (2013) 50: 13-31
doi:10.1016/j.chaos.2012.12.006
fulltext
Dagnino et al. 2015Dagnino, B., Gariel-Mathis, M.-A. and Roelfsema, P. R. Microstimulation of area V4 has little effect on spatial attention and on the perception of phosphenes evoked in area V1Journal of Neurophysiology (2015) 113(3): 730-739
doi:10.1152/jn.00645.2014
abstract
Davison 2012Davison, A. P.Automated Capture of Experiment Context for Easier Reproducibility in Computational Research Computing in Science and Engineering (2012) 14: 48-56
doi:10.1109/MCSE.2012.41
abstract, fulltext
Deco and Hugues 2012aDeco, G. and Hugues, E.Balanced input allows optimal encoding in a stochastic binary neural network model: an analytical studyPLoS One (2012) 7(2): e30723
doi:10.1371/journal.pone.0030723
fulltext
Deco and Hugues 2012bDeco, G. and Hugues, E.Neural network mechanisms underlying stimulus driven variability reductionPLoS Comput Biol (2012) 8(3): e1002395
doi:10.1371/journal.pcbi.1002395
fulltext
Deco and Jirsa 2012Deco, G. and Jirsa, V.Ongoing cortical activity at rest: criticality, multistability and ghost attractorsThe Journal of Neuroscience (2012) 32(10): 3366-3375
doi:10.1523/JNEUROSCI.2523-11.2012
fulltext
Deco at al. 2014bDeco, G., McIntosh, A.R., Shen, K., Hutchison, R.M., Menon, R.S., Everling, S., Hagmann, P. and Jirsa, V.K.Identification of Optimal Structural Connectivity Using Functional Connectivity and Neural ModelingThe Journal of Neuroscience (2014) 34(23): 7910-7916
doi:10.1523/JNEUROSCI.4423-13.2014
fulltext
Deco et al. 2012Deco, G., Senden, M. and Jirsa, V.K.How anatomy shapes dynamics: a semi-analytical study of the brain at rest by a simple spin modelFront. Comput. Neurosci. (2012) :
doi:10.3389/fncom.2012.00068
abstract, fulltext
Deco et al. 2013Deco,G., Ponce-Alvarez, A., Mantini, D., Romani, G.L., Hagmann, P. and Corbetta, M.Resting-state functional connectivity emerges from structurally and dynamically shaped slow linear fluctuationsJ. Neurosci. (2013) 33: 11239-11252
doi:10.1523/JNEUROSCI.1091-13.2013
abstract, (fulltext)
Deco et al. 2014Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G.L., Mantini, D. and Corbetta, M.How local excitation-inhibition ratio impacts the whole brain dynamicsJ. Neurosci. (2014) 34: 7886-7898
doi:10.1523/JNEUROSCI.5068-13.2014
abstract, (fulltext)
DeFelipe et al. 2013DeFelipe, J., Lopez-Cruz, P.L., Benavides-Piccione, R., Bielza, C., Larranaga, P., Anderson, S., Burkhalter, A., Cauli, B., Fairen, A., Feldmeyer, D., Fishell, G., Fitzpatrick, D., Freund, T.F., Gonzalez-Burgos, G., Hestrin, S., Hill, S., Hof, P.R., Huang, J., Jones, E.G., Kawaguchi, Y., Kisvarday, Z., Kubota, Y., Lewis, D.A., Marin, O., Markram, H., McBain, C.J., Meyer, H.S., Monyer, H., Nelson, S.B., Rockland, K., Rossier, J., Rubenstein, J.L.R., Rudy, B., Scanziani, M., Shepherd, G.M., Sherwood, C.C., Staiger, J.F., Tamas, G., Thomson, A., Wang, Y., Yuste, R. and Ascoli, G.A.New insights into the classification and nomenclature of cortical GABAergic interneuronsNature Reviews Neuroscience (2013) 14: 202-216
doi:10.1038/nrn3444
(fulltext)
Deger et al. 2012Deger, M., Helias, M., Rotter, S. and Diesmann, M. Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the NeocortexPLoS Comput Biol (2012) 8(9): e1002689
doi:10.1371/journal.pcbi.1002689
Dehghani et al. 2012Dehghani, N., Hatsopoulos, N.G., Haga, Z.D., Parker, R.A., Greger, B., Halgren, E., Cash, S.S., and Destexhe, A.Avalanche analysis from multielectrode ensemble recordings in cat, monkey, and human cerebral cortex during wakefulness and sleepFrontiers in Physiology (2012) 3: 302
doi:10.3389/fphys.2012.00302
abstract, fulltext
Deneux et al. 2012bDeneux, T., Takerkart, S., Grinvald, A., Masson, G.S. and Vanzetta, I.A processing work-flow for measuring erythrocytes velocity in extended vascular networks from wide field high-resolution optical imaging data.Neuroimage (2012) 59: 2569-2588
doi:10.1016/j.neuroimage.2011.08.081
fulltext
Denker et al. 2011cDenker, M., Roux, S., Lindén, H., Diesmann, M., Riehle, A. and Grün, S.The local field potential reflects surplus spike synchronyCerebral Cortex (2011) 21:2681-2695
doi:10.1093/cercor/bhr040
abstract, fulltext
Destexhe and Bedard 2012Destexhe, A. and Bedard, C.Do neurons generate monopolar current sources?AJP - JN Physiol (2012) 108(4): 953-955
doi:10.1152/jn.00357.2012
abstract, (fulltext)
Devor et al. 2013Devor, A., Bandettini, P., Boas, D., Bower, J., Buxton, R., Cohen, L., Dale, A., Einevoll, G., Fox, P., Franceschini, M., Friston, K., Fujimoto, J., Geyer, M., Greenberg, J., Halgren, E., Hamalainen, M., Helmchen, F., Hyman, B., Jasanoff, A., Jernigan, T., Judd, L., Kim, S.-G., Kleinfeld, D., Kopell, N., Kutas, M., Kwong, K., Larkum, M., Lo, E., Magistretti, P., Mandeville, J., Masliah, E., Mitra, P., Mobley, W., Moskowitz, M., Nimmerjahn, A., Reynolds, J., Rosen, B., Salzberg, B., Schaffer, C., Silva, G., So, P., Spitzer, N., Tootell, R., Essen, D. V., Vanduffel, W., Vinogradov, S., Wald, L., Wang, L., Weber, B. and Yodh, A. The challenge of connecting the dots in the B.R.A.I.N.Neuron (2013) 80: 270-274
doi:10.1016/j.neuron.2013.09.008
abstract
Djurfeldt 2012Djurfeldt, M. The Connection-set Algebra - A Novel Formalism for the Representation of Connectivity Structure in Neuronal Network ModelsNeuroinformatics (2012) 10(3): 287-304
doi:10.1007/s12021-012-9146-1
Djurfeldt et al. 2014Djurfeldt, M., Davison, A.P. and Eppler, J.M. Efficient generation of connectivity in neuronal networks from simulator-independent descriptionsFront. Neuroinform. (2014) 8:43
doi:10.3389/fninf.2014.00043
fulltext
Ego-Stengel et al. 2012Ego-Stengel, V., Le Cam, J., and Shulz, D.E.Coding of apparent motion in the thalamic nucleus of the rat vibrissal somatosensory system.J. Neuroscience (2012) 32(10): 3339-3351
doi:10.1523/JNEUROSCI.3890-11.2012
fulltext
Ehrlich and Schüffny 2013Ehrlich, M., Schüffny, R.Neural Schematics as a unified formal graphical representation of large-scale Neural Network StructuresFrontiers in Neuroinformatics (2013) 7:22
doi:10.3389/fninf.2013.00022
Einevoll et al. 2012Einevoll, G. T., Franke, F., Hagen, E., Pouzat, C. and Harris, K. D. Towards reliable spike-train recordings from thousands of neurons with multielectrodesCurrent Opinion in Neurobiology (2012) 22(1): 11-17
doi:10.1016/j.conb.2011.10.001
fulltext
El Boustani et al. 2012El Boustani, S., Yger, P., Frégnac, Y. and Destexhe, A.Stable Learning in Stochastic Network StatesThe Journal of Neuroscience (2012) 32(1): 194-214
doi:10.1523/JNEUROSCI.2496-11.2012
fulltext
Estebanez et al. 2012Estebanez, L., Boustani, S. E., Destexhe, A. and Shulz, D. E. Correlated input reveals coexisting coding schemes in a sensory cortexNature Neuroscience (2012) 15: 1691-1699
doi:10.1038/nn.3258
abstract, (fulltext)
Faugeras and Inglis 2015Faugeras, O. and Inglis, J. Stochastic neural field equations: a rigorous footingJournal of Mathematical Biology (2015) 71(2): 259-300
doi:10.1007/s00285-014-0807-6
fulltext
Faugeras and Maclaurin 2014aFaugeras, O. and Maclaurin, J. Asymptotic description of stochastic neural networks. I. Existence of a large deviation principleComptes Rendus Mathematique (2014) 352(10): 841-846
doi:10.1016/j.crma.2014.08.018
fulltext
Faugeras and Maclaurin 2014bFaugeras, O. and Maclaurin J.Asymptotic description of stochastic neural networks. II. Characterization of the limit lawComptes Rendus Mathematique (2014) 352(10): 847-852
doi:10.1016/j.crma.2014.08.017
abstract
Faugeras and MacLaurin 2014cFaugeras, O. and MacLaurin, J.A Large Deviation Principle and an Expression of the Rate Function for a Discrete Stationary Gaussian ProcessEntropy (2014) 16(12): 6722-6738
doi:10.3390/e16126722
fulltext
Faugeras and Maclaurin 2014dFaugeras, O. and MacLaurin, J.A Representation of the Relative Entropy with Respect to a Diffusion Process in Terms of Its Infinitesimal GeneratorEntropy (2014) 16(12): 6705-6721
doi:10.3390/e16126705
fulltext
Faye 2012Faye, G.Reduction method for studying localized solutions of neural field equations on the Poincaré diskComptes Rendus Mathematique (2012) 350(3-4): 161-166
doi:10.1016/j.crma.2012.01.022
abstract, fulltext
Faye and Chossat 2012Faye, G. and Chossat, P.Bifurcation Diagrams and Heteroclinic Networks of Octagonal H-PlanformsJournal of Nonlinear Science (2012) 22(3): 277-325
doi:10.1007/s00332-011-9118-x
abstract, fulltext, BibTeX
Faye and Chossat 2013Faye, G. and Chossat, P.A spatialized model of textures perception using structure tensor formalismAIMS Journal on Networks and Heterogeneous Media (2013) 8(1): 211-260
doi:10.3934/nhm.2013.8.211
abstract, (fulltext)
Faye et al. 2011Faye, G., Chossat, P. and Faugeras, O.Analysis of a hyperbolic geometric model for visual texture perceptionThe Journal of Mathematical Neuroscience (2011) 1:4
doi:10.1186/2190-8567-1-4
fulltext, BibTeX
Faye et al. 2012Faye, G., Rankin, J and Chossat, P.Localized states in an unbounded neural field equation with smooth firing rate function: a multi-parameter analysisJournal of Mathematical Biology (2012) :
doi:10.1007/s00285-012-0532-y
abstract, fulltext, BibTeX
Faye et al. 2013Faye, G., Rankin, J. and Lloyd, D. J. B.Localized radial bumps of a neural field equation on the Euclidean plane and the Poincaré diskNonlinearity (2013) : 26
doi:10.1088/0951-7715/26/2/437
abstract, BibTeX
Fiebig and Lansner 2014Fiebig F. and Lansner A.Memory Consolidation from Seconds to Weeks: A Three-Stage Neural Network Model with Autonomous Reinstatement DynamicsFront Comput Neurosci (2014) 8: 64
doi:10.3389/fncom.2014.00064
fulltext
Fournier et al. 2011Fournier, J., Monier, C., Pananceau, M. and Fregnac, Y. Adaptation of the simple or complex nature of V1 receptive fields to visual statisticsNature Neuroscience (2011) 14: 1053-1060
doi:10.1038/nn.2861
abstract, (fulltext)
Fournier et al. 2014Fournier, J., Monier, C., Levy, M., Marre, O., Sári, K., Kisvárday Z.F. and Frégnac, Y.Hidden Complexity of Synaptic Receptive Fields in Cat V1The Journal of Neuroscience (2014) 34(16): 5515-5528
doi:10.1523/JNEUROSCI.0474-13.2014
abstract, fulltext
Fournier et al. 2014bFournier, J., Monier, C., Marre, O., Levy, M., Sari, K., Kisvarday, Z. and Frégnac, YDiversity in the synaptic input of V1 Receptive FieldsThe Journal of Neuroscience (2014) in press
Fregnac 2012aFrégnac, Y.Reading Out the Synaptic Echoes of Low-Level Perception in V1Lecture Notes in Computer Science (2012) 7583: 486-495
doi:10.1007/978-3-642-33863-2_50
abstract
Friston et al. 2012Friston, K., Adams, R. A., Perrinet, L. and Breakspear, M. Perceptions as hypotheses: saccades as experimentsFront. Psychology (2012) 3:151
doi:10.3389/fpsyg.2012.00151
abstract, fulltext
Galtier and Wainrib 2012Galtier, M. and Wainrib, G.Multiscale analysis of slow-fast neuronal learning models with noiseThe Journal of Mathematical Neuroscience (2012) 2:13
doi:10.1186/2190-8567-2-13
abstract, fulltext, BibTeX
Galtier et al. 2012Galtier, M., Faugeras, O. and Bressloff, P. Hebbian Learning of Recurrent Connections: A Geometrical PerspectiveNeural Computation (2012) 24(9): 2346-2383
doi:10.1162/NECO_a_00322
(fulltext)
Garcia et al. 2014Garcia, S., Guarino, D., Jaillet, F., Jennings, T.R., Pröpper, R., Rautenberg, P.L., Rodgers, C., Sobolev, A., Wachtler, T., Yger, P. and Davison, A.P.Neo: an object model for handling electrophysiology data in multiple formatsFront. Neuroinform. (2014) 8:10
doi:10.3389/fninf.2014.00010
abstract, fulltext
Gerhard et al 2013Felipe Gerhard, Tilman Kispersky, Gabrielle J. Gutierrez, Eve Marder, Mark Kramer,
Uri Eden
Successful Reconstruction of a Physiological Circuit with Known Connectivity from Spiking Activity AlonePlos Computational Biology (2013) 9(7): 003138
doi:10.1371/journal.pcbi.1003138
fulltext
Gerstein et al. 2012Gerstein, G.L., Williams, E.R., Diesmann, M., Grün, S. and Trengove, C.Detecting synfire chains in parallel spike dataJournal of Neuroscience Methods (2012) 206(1): 54-64
doi:10.1016/j.jneumeth.2012.02.003
fulltext
Glabskaet al 2015Glabska, H., Norheim, E., Devor, A., Dale, A.M., Einevoll, G.T. and Wójcik, D.K. Generalized Laminar Population Analysis (gLPA) for interpretation of multielectrode data from cortexin press
Gomez-Gonzales et al 2014Gomez-Gonzales, J.F., Destexhe, A. and Bal, T.Application of active electrode compensation to perform continuous voltage-clamp recordings with sharp microelectrodesJ. Neural Engineering (2014) 11:056028
doi:10.1088/1741-2560/11/5/056028
abstract
Grassia et al. 2011Grassia, F., Buhry, L., Levi, T., Tomas, J., Destexhe, A. and Saaghi, S.Tunable neuromimetic integrated system for emulating cortical neuron modelsFront. Neurosci. (2011) 5:134
doi:10.3389/fnins.2011.00134
Grytskyy et al. 2013Grytskyy, D., Tetzlaff, T., Diesmann, M., and Helias, M.A unified view on weakly correlated recurrent networksFront Comput Neurosci. (2013) 7:131
doi:10.3389/fncom.2013.00131
fulltext
Grytskyy et al. 2013bGrytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M.A unified view on weakly correlated recurrent networksFrontiers in computational neuroscience (2013) 7(131): 1-19
doi:10.3389/fncom.2013.00131
fulltext
Habenschuss et al. 2013Habenschuss, S., Puhr, H. and Maass, W. Emergence of Optimal Decoding of Population Codes Through STDPNeural Computation (2013) 25(6): 1371-1407
doi:10.1162/NECO_a_00446
abstract, fulltext
Habenschuss et al. 2013aStefan Habenschuss, Zeno Jonke, and Wolfgang MaassStochastic Computations in Cortical Microcircuit ModelsPLOS Computational Biology (2013) 9(11): e1003311
doi:10.1371/journal.pcbi.1003311
abstract
Hagen et al. 2015bHagen, E., Ness, T.V., Khosrowshahi, A., Sørensen, C., Fyhn, M., Hafting, T., Franke, F. and Einevoll, GT.ViSAPy: A Python tool for biophysics-based generation of virtual spiking activity for evaluation of spike-sorting algorithmsJournal of Neuroscience Methods (2015) 245: 182-204
doi:10.1016/j.jneumeth.2015.01.029
abstract, fulltext
Halnes et al. 2013G. Halnes, I. Ostby, K.H. Pettersen, S.W. Omholt, and G.T. EinevollElectrodiffusive model for astrocytic and neuronal ion concentration dynamicsPLoS Computational Biology (2013) 9:e1003386
doi:10.1371/journal.pcbi.1003386
abstract, fulltext
Hansen et al. 2015Hansen, E.C.A, Battaglia, D., Spiegler, A., Deco, G. and Jirsa, V.K.Functional connectivity dynamics: Modeling the switching behavior of the resting stateNeuroImage (2015) 105: 525-535
doi:10.1016/j.neuroimage.2014.11.001
Hanuschkin et al.Hanuschkin, A., Diesmann M., and Morrison, A.A reafferent and feed-forward model of song syntax generation in the Bengalese finchJ Comput Neurosci. (2011) 31(3):509-32
doi:10.1007/s10827-011-0318-z
fulltext
Heiberg et al 2013Thomas Heiberg, Birgit Kriener, Tom Tetzlaff, Alex Casti, Gaute T. Einevoll, Hans E. PlesserFiring-rate models capture essential response dynamics of LGN relay cellsJ Comput Neurosci (2013) 35:359-375
doi:10.1007/s10827-013-0456-6
abstract
Helias et al. 2011Helias, M., Deger, M., Rotter, S. and Diesmann, M.Finite post synaptic potentials cause a fast neuronal responseFront. Neurosci. (2011) 5:19
doi:10.3389/fnins.2011.00019
abstract, fulltext
Helias et al. 2012Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., Fukai, T., Morrison, A. and Diesmann, M. Supercomputers ready for use as discovery machines for neuroscienceFront. Neuroinform. (2012) 6:26
doi:10.3389/fninf.2012.00026
fulltext
Helias et al. 2013Helias, M., Tetzlaff, T., and Diesmann, M.Echoes in correlated neural systems New J. Phys. (2013) 15: 023002
doi:10.1088/1367-2630/15/2/023002
fulltext
Helias et al. 2014Helias, M., Tetzlaff, T. and Diesmann, M. The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent DynamicsPLoS Computational Biology (2014) 10(1): e1003428
doi:10.1371/journal.pcbi.1003428
fulltext
Henker et al. 2012Henker, S., Partzsch, J. and Schüffny, R.Accuracy evaluation of numerical methods used in state-of-the-art simulators for spiking neural networksJournal of Computational Neuroscience (2012) 32(2): 309-326
doi:10.1007/s10827-011-0353-9
fulltext
Hennequin et al. 2014Hennequin, G., Vogels, T.P. and Gerstner, W.Optimal Control of Transient Dynamics in Balanced Networks Supports Generation of Complex MovementsNeuron (2014) 82: 1394-1406
doi:10.1016/j.neuron.2014.04.045
fulltext
Hennequinet al 2012Hennequin, G., Vogels, T.P. and Gerstner, W.Non-normal amplification in random balanced neuronal networksPhysical Review E (2012) 86: 011909
doi:10.1103/PhysRevE.86.011909
fulltext
Herman et al. 2013Herman P, Lundqvist M, Lansner ANested theta-gamma Oscillations in a simulated meso-scale memory networkBrain Res (2013) 1536:68-87
doi:10.1016/j.brainres.2013.08.002
Hermann Touboul 2012Hermann, G. and Touboul, J. Heterogeneous Connections Induce Oscillations in Large-Scale NetworksPhys. Rev. Lett. (2012) 109: 018702
doi:10.1103/PhysRevLett.109.018702
(fulltext)
Huys et al. 2014Huys, R., Perdikis, D. and Jirsa, V.K.Functional architectures and structured flows on manifolds: a dynamical framework for motor behaviorPsychol Rev. (2014) 121(3):302-336
doi:10.1037/a0037014
Indiveri et al. 2011Indiveri, G., Linares-Barranco, B., Hamilton, T. J., van Schaik, A., Etienne-Cummings, R., Delbruck, T., Liu, S.-C., Dudek, P., Häfliger, P., Renaud, S., Schemmel, J., Cauwenberghs, G., Arthur, J., Hynna, K., Folowosele, F., Saïghi, S., Serrano-Gotarredona, T., Wijekoon, J., Wang, Y. and Boahen, K. Neuromorphic silicon neuron circuitsFront. Neurosci. (2011) 5:73
doi:10.3389/fnins.2011.00073
fulltext
Insabato et al. 2014Insabato, A., Dempere-Marco, L., Pannunzi, M., Deco, G. and Romo, R.The influence of spatio-temporal structure of noisy stimuli in decision-makingPLoS Comput. Biol. (2014) 10: e1003492
doi:10.1371/journal.pcbi.1003492
fulltext
Ito et al. 2014Ito, J., Roy, S., Liu, Y., Cao, Y., Fletcher, M., Lu, L., Boughter, J. D., Grün, S. and Heck, H. Whisker barrel cortex delta oscillations and gamma power in the awake mouse are linked to respirationNature Communications (2014) 5: 3572
doi:10.1038/ncomms4572
fulltext
Kaplan and Lansner 2014Kaplan, B.A. and Lansner, A.A spiking neural network model of self-organized pattern recognition in the early mammalian olfactory systemFront. Neural Circuits (2014) 8:5
doi:10.3389/fncir.2014.00005
abstract
Kaplan et al. 2013Kaplan, B.A., Lansner, A., Masson, G.S. and Perrinet, L.U. Anisotropic connectivity implements motion-based prediction in a spiking neural network Front. Comput. Neurosci. (2013) 7:112
doi:10.3389/fncom.2013.00112
Kaplan Khoei et al 2014Kaplan, B.A., Khoei, M.A., Lansner, A. and Perrinet, L.U.Signature of an anticipatory response in area V1 as modeled by a probabilistic model and a spiking neural networkInternational Joint Conference on Neural Networks (IJCNN) (2014) : 3205-3212

doi:10.1109/IJCNN.2014.6889847
abstract
Kappel et al 2014Kappel, D., Nessler, B. and Maass, W.STDP installs in winner-take-all circuits an online approximation to hidden Markov model learningPLOS Computational Biology (2014) 10(3):e1003511
doi:10.1371/journal.pcbi.1003511
abstract, fulltext
Kappel et al. 2013D. Kappel, B. Nessler, and W. MaassSTDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model LearningPLoS Comput Biol (2014) 10(3): e1003511
doi:10.1371/journal.pcbi.1003511
fulltext
Karube et al. 2016Karube, F., Sári, K. and Kisvárday, Z.F.Axon topography of layer 6 spiny cells to orientation map in the primary visual cortex of the cat (area 18)Brain Struct Funct (2016)
doi:10.1007/s00429-016-1284-z
fulltext
Kerr et al.Kerr, C.C., van Albada, S., Neymotin, S.A., Chadderdon, G.L., Robinson, P.A., and Lytton, W.W.Cortical information flow in Parkinson's disease: a composite network/field modelFront Comput Neurosci. (2013) 7:39
doi:10.3389/fncom.2013.0003
fulltext
Khoei et al. 2013Khoei, M.A., Masson, G.S. and Perrinet, L.U. Motion-based prediction explains the role of tracking in motion extrapolationJournal of Physiology (2013) 107: 409-420
doi:10.1016/j.jphysparis.2013.08.001
(fulltext)
Klampfl and Maass 2013S. Klampfl and W. Maass Emergence of dynamic memory traces in cortical microcircuit models through STDPThe Journal of Neuroscience (2013) 33(28): 11515-11529
doi:10.1523/JNEUROSCI.5044-12.2013
abstract, (fulltext)
Kooijmans et al. 2014Kooijmans, R.N., Self,M.W., Wouterlood,F.G., Beliën, J.A.M. and Roelfsema P.R.Inhibitory Interneuron Classes Express Complementary AMPA-Receptor Patterns in Macaque Primary Visual CortexThe Journal of Neuroscience (2014) 34(18): 6303-6315
doi:10.1523/JNEUROSCI.3188-13.2014
fulltext
Kriener et al. 2014Kriener, B., Enger, H., Tetzlaff, T., Plesser, H.E., Gewaltig, M.-O. and Einevoll, G.T. Dynamics of self-sustained asynchronous-irregular activity in random networks of spiking neurons with strong synapsesFront. Comput. Neurosci. (2014) 8:136
doi:10.3389/fncom.2014.00136
fulltext
Kriener et al. 2014bHelias, M., Rotter, S., Diesmann, M. and Einevoll, G. T. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regimeFrontiers in computational neuroscience (2014) 7: 1
doi:10.3389/fncom.2013.00187
fulltext
Krishnamurthy et al. 2012Krishnamurthy, P., Silberberg, G. and Lansner, A.A cortical attractor network with Martinotti cells driven by facilitating synapsesPLoS ONE (2012) 7(4): e30752
doi:10.1371/journal.pone.0030752
fulltext
Kunkel et al. 2011Kunkel, S., Diesmann, M. and Morrison, A.Limits to the Development of Feed-Forward Structures in Large Recurrent Neuronal NetworksFront. Comput. Neurosci. (2011) 4:160
doi:10.3389/fncom.2010.00160
abstract, fulltext
Kunkel et al. 2011bKunkel, S., Potjans, T.C., Eppler, J.M., Plesser, H.E., Morrison, A. and Diesmann, M.Meeting the memory challenges of brain-scale network simulationFront. Neuroinform. (2011) 5:35
doi:10.3389/fninf.2011.00035
abstract
Kunkel et al. 2014Kunkel, S., Schmidt, M., Eppler, J.M., Plesser, H.E., Masumoto, G., Igarashi, J., Ishii, S., Fukai, T., Morrison, A., Diesmann, M. and Helias, M. Spiking network simulation code for petascale computersFront. Neuroinform. (2014) 8:78
doi:10.3389/fninf.2014.00078
abstract, fulltext
Lansner et al. 2013Lansner A, Marklund P, Sikström S, Nilsson L-GReactivation in Working Memory: An Attractor Network Model of Free RecallPLoS One (2013) 8: e73776.
doi:10.1371/journal.pone.0073776
abstract
Lütcke et al 2013Henry Lütcke, Felipe Gerhard, Friedemann Zenke, Wulfram Gerstner and Fritjof HelmchenInference of neuronal network spike dynamics and topology from calcium imaging dataFrontiers in Neural Circuits (2013) 7: 201
doi:10.3389/fncir.2013.00201
abstract, fulltext
LeCam et al 2011Le Cam, J., Estebanez, L., Jacob, V. and Shulz, D.E.The spatial structure of multi-whisker receptive fields in the barrel cortex is stimulus-dependent.J. Neurophysiol (2011) 106(2):986-98
doi:10.1152/jn.00044.2011.
Ledberg et al. 2012Ledberg, A., Montagnini, A., Coppola, R. and Bressler, S.L.Reduced Variability of Ongoing and Evoked Cortical Activity Leads to Improved Behavioral PerformancePLoS ONE (2012) 7: e43166
doi:10.1371/journal.pone.0043166
fulltext
Leski et al. 2013S.Leski, H. Linden, T. Tetzlaff, K.H. Pettersen, G.T. EinevollFrequency dependence of signal power and spatial reach of the local field potentialPLoS Computational Biology (2013) 9:e1003137
doi:10.1371/journal.pcbi.1003137
abstract, fulltext
Leskiet al 2013Łeski, S., Lindén, H., Tetzlaff, T., Pettersen, K. H. and Einevoll, G. T.Frequency Dependence of Signal Power and Spatial Reach of the Local Field PotentialPLoS Computational Biology (2013) 9(7): e1003137
doi:10.1371/journal.pcbi.1003137
fulltext
Levy et al. 2013Levy, M., Fournier, J. and Frégnac, Y.The role of delayed suppression during fast and slow contrast adaptation in V1 Simple cellsThe Journal of Neuroscience (2013) 33(15): 6388-6400
doi:10.1523/JNEUROSCI.3609-12.2013
abstract, fulltext
Lindén et al. 2011Lindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M. and Einevoll, G.T.Modeling the spatial reach of the LFPNeuron (2011) 72(5): 859-872
doi:10.1016/j.neuron.2011.11.006
fulltext
Linden et al. 2014Lindén, H., Hagen, E., Łeski, S., Norheim, E. S., Pettersen, K. H. and Einevoll, G. T.LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neuronsFront. Neuroinform. (2014) 7:41
doi:10.3389/fninf.2013.00041
abstract, fulltext
Lundqvist et al. 2011aLundqvist, M., Herman, P. and Lansner, A.Theta and gamma power increases and alpha/beta power decreases with memory load in an attractor network modelJ Cogn Neurosci (2011) 23:3008-3020
doi:10.1162/jocn_a_00029
abstract
Lundqvist et al. 2012Lundqvist, M., Herman, P. and Lansner, A.Variability of spike firing during theta-coupled replay of memories in a simulated attractor networkBrain Res (2012) 1434:152-161
doi:10.1016/j.brainres.2011.07.055
fulltext
Lundqvist et al. 2013aLundqvist M, Herman P, Palva M, Palva S, Silverstein D, and LansnerStimulus detection rate and latency, firing rates and 1-40 Hz oscillatory power are modulated by infra-slow fluctuations in a bistable attractor network modelNeuroimage (2013) 83:458-471.
doi:10.1016/j.neuroimage.2013.06.080
Lundqvist et al. 2013cLundqvist M, Herman P, Lansner AEffect of Prestimulus Alpha Power, Phase, and Synchronization on Stimulus Detection Rates in a Biophysical Attractor Network ModelJ Neurosci (2013) 33: 11817-11824
doi:10.1523/JNEUROSCI.5155-12.2013
Markram et al. 2011Markram, H., Gerstner, W. and Sjoestoem, P.J.A history of spike-timing-dependent plasticityFront. Syn. Neurosci. (2011) 3:4
doi:10.3389/fnsyn.2011.00004
abstract, fulltext
Masson and Perrinet 2012Masson, G. S. and Perrinet, L. U.The behavioral receptive field underlying motion integration for primate tracking eye movementsNeuroscience & Biobehavioral Reviews (2012) 36(1): 1-25
doi:10.1016/j.neubiorev.2011.03.009
fulltext
Mayrhofer et al. 2013Mayrhofer, J.M., Skreb, V., von der Behrens, W., Musall, S., Weber, B. and Haiss, F.Novel two-alternative forced choice paradigm for bilateral vibrotactile whisker frequency discrimination in head-fixed mice and rats AJP - JN Physiol (2013) 109(1): 273-284
doi:10.1152/jn.00488.2012
abstract, (fulltext)
Meli and Lansner 2013Meli, C. and Lansner, A.A modular attractor associative memory with patchy connectivity and weight pruningNetwork: Computation in Neural Systems (2013) 24(4):129-150
doi:10.3109/0954898X.2013.859323
abstract, fulltext
Mensi et al 2012Skander Mensi , Richard Naud , Christian Pozzorini , Michael Avermann , Carl C. H. Petersen , Wulfram Gerstner Parameter extraction and classification of three cortical neuron types reveals two distinct adaptation mechanismsJournal of Neurophysiology (2012) 107(6): 1756-1775
doi:10.1152/jn.00408.2011
fulltext
Milekovic et al. 2015Milekovic, T., Truccolo, W., Grün, S., Riehle, A. and Brochier, T.Local field potentials in primate motor cortex encode grasp kinetic parametersNeuroimage (2015) 114: 338-355
doi:10.1016/j.neuroimage.2015.04.008
fulltext
Muir and Kampa 2015Muir, D.R. and Kampa, B.M. FocusStack and StimServer: a new open source MATLAB toolchain for visual stimulation and analysis of two-photon calcium neuronal imaging dataFront Neuroinform. (2015) 8:85.
doi:10.3389/fninf.2014.00085
abstract
Muller and Destexhe 2012Muller, L. and Destexhe, A. Propagating waves in thalamus, cortex and the thalamocortical system: Experiments and modelsJournal of Physiology-Paris (2012) 106 (5-6): 222-238
doi:10.1016/j.jphysparis.2012.06.005
(fulltext)
Muller et al. 2014Muller, L.E., Reynaud, A., Chavane, F. and Destexhe, A.The stimulus-evoked population response in visual cortex of awake monkey is a propagating waveNature Communications (2014) 5: 3675
doi:10.1038/ncomms4675
fulltext
Muller et al. 2014bMuller, L.E., Destexhe, A. and Rudolph-Lilith, M.Brain networks: small-worlds, after all?New Journal of Physics (2014) 16: 105004
doi:10.1088/1367-2630/16/10/105004
abstract, fulltext
Musall et al. 2014Musall, S., von der Behrens, W., Mayrhofer, J.M., Weber ,B., Helmchen, F. and Haiss F.Tactile frequency discrimination is enhanced by circumventing neocortical adaptationNature Neuroscience (2014) 17(11): 1567-1573
doi:10.1038/nn.3821
abstract, (fulltext)
Nasser et al. 2012Nasser, H., Marre, O. and Cessac, B. Spatio-temporal spike trains analysis for large scale networks using maximum entropy principle and Monte-Carlo methodJournal of Statistical Mechanics (2013) : P03006
doi:10.1088/1742-5468/2013/03/P03006
abstract, fulltext, BibTeX
Naud and Gerstner 2012Naud, R. and Gerstner, W. Coding and Decoding with Adapting Neurons: A Population Approach to the Peri-Stimulus Time HistogramPLoS Comput Biol (2012) 8(10): e1002711
doi:10.1371/journal.pcbi.1002711
abstract, fulltext
Naude et al. 2013Naude, J., Cessac, B., Berry, H. and Delord, B. Effects of Cellular Homeostatic Intrinsic Plasticity on Dynamical and Computational Properties of Biological Recurrent Neural Networks The Journal of Neuroscience (2013) 33(38):15032-15043
doi:10.1523/JNEUROSCI.0870-13.2013
fulltext
Navaridasa et al. 2013Navaridasa, J., Furbera, S., Garsidea, J., Jinb, X., Khanc, M., Lestera, D., Lujã¡na, M., Miguel-Alonsod, J., Painkrasa, E., Pattersona, C., Planaa, L. A., Rasta, A., Richardsa, D., Shib, Y., Templea, S., Wue, J. and Yangf, S. SpiNNaker: Fault tolerance in a power- and area- constrained large-scale neuromimetic architectureParallel Computing (2013) 39(11): 693-708
doi:10.1016/j.parco.2013.09.001
fulltext
Nessler et al. 2013Nessler, B., Pfeiffer, M., Buesing, L. and Maass, W.Bayesian computation emerges in generic cortical microcircuits through spike-timing-dependent plasticityPLOS Computational Biology (2013) 9(4):e1003037
doi:10.1371/journal.pcbi.1003037
abstract, fulltext, BibTeX
Partzsch 2011Partzsch, J. and Schüffny, R.Analysing the Scaling of Connectivity in Neuromorphic Hardware and in Models of Neural NetworksIEEE Transactions on Neural Networks (2011) 22(6):919-935
doi:10.1109/TNN.2011.2134109
Partzsch and Schüffny 2012Partzsch, J. and Schüffny, R.Developing structural constraints on connectivity for biologically embedded neural networksBiological Cybernetics (2012) 106(3): 191-200
doi:10.1007/s00422-012-0489-3
abstract, fulltext
Pecevski et al. 2011Pecevski, D., Buesing, L. and Maass, W. Probabilistic Inference in General Graphical Models through Sampling in Stochastic Networks of Spiking NeuronsPLoS Comput Biol (2011) 7(12): e1002294
doi:10.1371/journal.pcbi.1002294
fulltext
Perdikis Huys Jirsa 2011Perdikis, D., Huys, R., Jirsa, V.K.Time Scale Hierarchies in the Functional Organization of Complex BehaviorsPLoS Comput Biol (2011) 7(9):e1002198
doi:10.1371/journal.pcbi.1002198
fulltext
Perrinet and Bednar 2015Perrinet, L.U., Bednar, J.A.Edge co-occurrences can account for rapid categorization of natural versus animal imagesScientific Reports (2015) 5: 11400
doi:10.1038/srep11400
fulltext
Perrinet and Masson 2012Perrinet, L.U. and Masson, G.S.Motion-based prediction is sufficient to solve the aperture problemNeural Computation (2012) 24(10): 2726-2750
doi:10.1162/NECO_a_00332
abstract, (fulltext)
Perrinet et al. 2014Perrinet, L.U., Adams, R.A. and Friston, K.J.Active inference, eye movements and oculomotor delaysin Biological Cybernetics (2014) 108(6):777-801
doi:10.1007/s00422-014-0620-8
fulltext, BibTeX
Petrovici et al. 2014Petrovici, M. A., Vogginger, B., Müller, P., Breitwieser, O., Lundqvist, M., Muller, L., Ehrlich, M., Destexhe, A., Lansner, A., Schüffny, R., Schemmel, J. and Meier, K. Characterization and Compensation of Network-Level Anomalies in Mixed-Signal Neuromorphic Modeling PlatformsPLoS ONE (2014) 9(10): e108590
doi:10.1371/journal.pone.0108590
abstract
Pettersen et al 2014Pettersen, K.H., Linden, H., Tetzlaff, T. and Einevoll, G.T. Power Laws from Linear Neuronal Cable Theory: Power Spectral Densities of the Soma Potential, Soma Membrane Current and Single-Neuron Contribution to the EEGPLoS Computational Biology (2014) 10(11): e1003928
doi:10.1371/journal.pcbi.1003928
fulltext
Peyrache et al. 2011Peyrache, A., Battaglia, F. and Destexhe, A. Inhibition recruitment in prefrontal cortex during sleep spindles and gating of hippocampal inputsPNAS (2011) 108(41): 17207-17212
doi:10.1073/pnas.1103612108
fulltext
Peyrache et al. 2012Peyrache, A., Dehghani, N., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Donoghue, J.S., Hochberg, L.R., Halgren, E., Cash, S.S., and Destexhe, A.Spatiotemporal dynamics of neocortical excitation and inhibition during human sleepPNAS (2012) 109 (5): 1731-1736
doi:10.1073/pnas.1109895109
abstract, fulltext
Pfeil et al. 2012Pfeil, T., Grübl, A., Jeltsch, S., Müller, E., Müller, P., Petrovici, M., Schmuker, M., Brüderle, D., Schemmel, J. and Meier, K. Six networks on a universal neuromorphic computing substrateFront. Neurosci. (2013) 7:11
(Pre-print: http://arxiv.org/abs/1210.7083)
doi:10.3389/fnins.2013.00011
abstract
Pfeil et al. 2012bPfeil, T., Potjans, T. C., Schrader, S., Potjans, W., Schemmel, J., Diesmann, M. and Meier, K. Is a 4-bit synaptic weight resolution enough? - constraints on enabling spike-timing dependent plasticity in neuromorphic hardwareFront. Neurosci. (2012) 6:90
doi:10.3389/fnins.2012.00090
abstract, fulltext
Picado-Muiño et al. 2013Picado-Muiño D, Borgelt C, Berger D, Gerstein G, Grün S.Finding neural assemblies with frequent item set miningFrontiers in neuroinformatics (2013) 7:1-15
doi:10.3389/fninf.2013.00009
abstract, fulltext
Pinotsis et al. 2013Pinotsis, D.A., Hansen, E., Friston, K.J. and Jirsa, V.K.Anatomical connectivity and the resting state activity of large cortical networksNeuroimage (2013) 65:127-38
doi:10.1016/j.neuroimage.2012.10.016
abstract, (fulltext)
Pipa et al. 2013Pipa G, Grün S, van Vreeswijk C.Impact of Spike Train Autostructure on Probability Distribution of Joint Spike EventsNeural Comput. (2013) 25(5):1123-1163
doi:10.1162/NECO_a_00432
abstract
Pooresmaeili and Roelfsema 2014Pooresmaeili, A. and Roelfsema, P. R. A Growth-Cone Model for the Spread of Object-Based Attention during Contour GroupingCurrent Biology (2014) 24(24): 2869-2877
doi:10.1016/j.cub.2014.10.007
abstract
Pooresmaeili et al. 2014Pooresmaeili, A., Poort, and Roelfsema, P.R.Simultaneous selection by object-based attention in visual and frontal cortexPNAS (2014) 111(17): 6467-6472
doi:10.1073/pnas.1316181111
fulltext
Poort et al. 2012Poort, J., Raudies, F., Wannig, A., Lamme, V.A.F., Neumann, H. and Roelfsema, P.R.The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex.Neuron (2012) 75: 143-156
doi:10.1016/j.neuron.2012.04.032
abstract, (fulltext)
Potjans and Diesmann 2012Potjans, T. and Diesmann, M.The Cell-Type Specific Cortical Microcircuit: Relating Structure and Activity in a Full-Scale Spiking Network ModelFirst published online: December 2, 2012. Cereb. Cortex (2014) 24 (3): 785-806
doi:10.1093/cercor/bhs358
abstract, fulltext
Potjans et al. 2011bPotjans, W., Diesmann, M. and Morrison, A.An Imperfect Dopaminergic Error Signal Can Drive Temporal-Difference LearningPLoS Comput Biol. (2011) 7(5): e1001133
doi:10.1371/journal.pcbi.1001133
abstract, fulltext
Pozzorini et al. 2013Pozzorini, C., Naud, R., Mensi, S. and Gerstner, W. Temporal whitening by power-law adaptation in neocortical neuronsNature Neuroscience (2013) 16: 942-948
doi:10.1038/nn.3431
abstract
Probst et al. 2015Probst, D., Petrovici, M. A., Bytschok, I., Bill, J., Pecevski, D., Schemmel, J. and Meier, K. Probabilistic inference in discrete spaces can be implemented into networks of LIF neuronsFront. Comput. Neurosci. (2015) 9:13
doi:10.3389/fncom.2015.00013
fulltext
Rankin et al. 2012Rankin, J., Tlapale, E., Veltz, R., Faugeras, O. and Kornprobst, P. Bifurcation analysis applied to a model of motion integration with a multistable stimulusJournal of Computational Neuroscience (2013) 34(1): 103-124
doi:10.1007/s10827-012-0409-5
fulltext, BibTeX
Rankin et al. 2013aRankin, J., Tlapale, E., Veltz, R., Faugeras, O. and Kornprobst, P. Bifurcation analysis applied to a model of motion integration with a multistable stimulus Journal of Computational Neuroscience (2013) 34(1): 103-124
doi:10.1007/s10827-012-0409-5
fulltext
Rankin et al. 2013bRankin, J., Meso, A. I., Masson, G.S., Faugeras, O. and Kornprobst, P. Bifurcation study of a neural field competition model with an application to perceptual switching in motion integrationJournal of Computational Neuroscience (2013) September: 1-21
doi:10.1007/s10827-013-0465-5
fulltext
Reig et al. 2015Reig, R., Zerlaut, Y., Vergara, R., Destexhe, A. and Sanchez-Vives, M.Gain modulation of synaptic inputs by network state in auditory cortex in vivoJournal of Neuroscience (2015) 35: 2689-2702
doi:10.1523/JNEUROSCI.2004-14.2015
abstract
Reynaud et al. 2012Reynaud, A., Masson, G. S. and Chavane, F.Dynamics of Local Input Normalization Result from Balanced Short- and Long-Range Intracortical Interactions in Area V1The Journal of Neuroscience (2012) 32(36):12558 - 12569
doi:10.1523/JNEUROSCI.1618-12.2012
fulltext
Rezende and Gerstner 2014Rezende, D.J. and Gerstner, W.Stochastic variational learning in recurrent spiking networksFront. Comput. Neurosci. (2014) 8:38
doi:10.3389/fncom.2014.00038
fulltext
Riehle et al. 2013Riehle, A., Wirtssohn, S., Grün, S. and Brochier, T. Mapping the spatio-temporal structure of motor cortical LFP and spiking activities during reach-to-grasp movementsFront. Neural Circuits (2013) 7:48
doi:10.3389/fncir.2013.00048
fulltext
Rombouts et al. 2015Rombouts, J.O., Bohte, S.M. and Roelfsema, P.R.How Attention Can Create Synaptic Tags for the Learning of Working Memories in Sequential TasksPLoS Comput Biol (2015) 11(3): e1004060
doi:10.1371/journal.pcbi.1004060
fulltext
Rombouts et al. 2015bRombouts, J. O., Bohte, S. M., Martinez-Trujillo, J. and Roelfsema, P. R. A learning rule that explains how rewards teach attentionVisual Cognition (2015) 33:179-205
doi:10.1080/13506285.2015.1010462
abstract
Rostro-Gonzalez et al. 2011Rostro-Gonzalez, H., Cessac, B., Girau, B. and Torres-Huitzil, C. The role of the asymptotic dynamics in the design of FPGA-based hardware implementations of gIF-type neural networksJ. Physiol. Paris, (2011) 105:1-3
doi:10.1016/j.jphysparis.2011.09.004
fulltext, BibTeX
Rostro-Gonzalez et al. 2012Rostro-Gonzalez, H., Cessac, B. and Viéville, T.Parameters estimation in spiking neural networks: a reverse-engineering approachJ. Neural. Eng. (2012) 9: 026024
doi:10.1088/1741-2560/9/2/026024
abstract, fulltext, BibTeX
Rudolph-Lilith and Muller 2014Rudolph-Lilith, M. and Muller, L. E. On a representation of the Verhulst logistic mapDiscrete Mathematics (2014) 324: 19-27
doi:10.1016/j.disc.2014.01.018
fulltext
Rudolph-Lilith and Muller 2014bRudolph-Lilith, M. and Muller, L. E. Algebraic approach to small-world network modelsPhys. Rev. E (2014) 89: 012812
doi:10.1103/PhysRevE.89.012812
abstract, fulltext
Santamari­a-Garcia et al. 2013Santamari­a-Garci­a, H., Pannunzi, M., Ayneto, A., Deco, G., Sebastian-Galles, N.'If you are good, I get better': the role of social hierarchy in perceptual decision-makingSoc. Cogn. Affect. Neurosci. (1014) 9(10):1489-1497
doi:10.1093/scan/nst133
abstract, (fulltext)
Sanz Leon et al. 2012Sanz Leon, P., Vanzetta, I., Masson, G.S. and Perrinet, L.U.Motion Clouds: model-based stimulus synthesis of natural-like random textures for the study of motion perceptionAJP - JN Physiol (2012) 107 (11): 3217-3226
doi:10.1152/jn.00737.2011
abstract, (fulltext)
Savin et al. 2014Savin, C., Dayan, P. and Lengyel, M.
Optimal Recall from Bounded Metaplastic Synapses: Predicting Functional Adaptations in Hippocampal Area CA3PLoS Comput Biol (2014) 10(2): e1003489
doi:10.1371/journal.pcbi.1003489
fulltext
Schain et al. 2013Schain, M., Benjaminsson, S., Varnäs, K., Forsberg, A., Halldin, C., Lansner, A., Farde, L. and Varrone, A. Arterial input function derived from pairwise correlations between PET-image voxelsJ Cereb Blood Flow Metab (2013) 33:1058-1065
doi:10.1038/jcbfm.2013.47
(fulltext)
Schmuker et al. 2014Schmuker, M., Pfeil, T. and Nawrot, M. P. A neuromorphic network for generic multivariate data classificationPNAS (2014) 111(6): 2081-2086
doi:10.1073/pnas.1303053111
abstract, fulltext
Scholze et al. 2011Scholze, S., Eisenreich, H., Höppner, S., Ellguth, G., Henker, S., Ander, M., Hänzsche, S., Partzsch, J., Mayr, C. and Schüffny, R.A 32 GBit/s communication SoC for a waferscale neuromorphic systemIntegration, the VLSI Journal (Elsevier) (2011) 45(1): 61-75,
doi:10.1016/j.vlsi.2011.05.003
Scholze et al. 2011bScholze, S., Schiefer, S., Partzsch, J., Hartmann, S., Mayr, C., Höppner, S., Eisenreich, H., Henker, S., Vogginger, B. and Schüffny, R.VLSI implementation of a 2.8 Gevent/s packet based AER interface with routing and event sorting functionalityFrontiers in Neuromorphic Engineering (2011) 5:117
doi:10.3389/fnins.2011.00117
Schultze-Kraft et al. 2013Schultze-Kraft, M., Diesmann, M., Grün, S. and Helias, M.Noise Suppression and Surplus Synchrony by Coincidence DetectionPLoS Comput Biol. (2013) 9(4):e1002904
doi:10.1371/journal.pcbi.1002904
Self et al. 2013Self, M.W., van Kerkoerle, T., Supèr, H. & Roelfsema, P.R. Distinct roles of the cortical layers of area V1 in figure-ground segregationCurr. Biol. (2013) 23: 2121-2129
doi:10.1016/j.cub.2013.09.013
abstract
Self et al. 2014Self, M.W., Lorteije, J.A.M., Vangeneugden, J., van Beest, E.H., Grigore, M.E., Levelt, C., Heimel, J.A. and Roelfsema, P.R.Orientation-Tuned Surround Suppression in Mouse Visual CortexThe Journal of Neuroscience (2014) 34(28): 9290-9304
doi:10.1523/JNEUROSCI.5051-13.2014
fulltext
Silverstein and Lansner 2011Silverstein, D.N. and Lansner, A.Is Attentional Blink a Byproduct of Neocortical Attractors?Front Comput Neurosci. (2011) 5: 13
doi:10.3389/fncom.2011.00013
abstract, fulltext
Simoncini et al. 2012Simoncini, C., Perrinet, L.U., Montagnini, A., Mamassian, P. and Masson G.S.More is not always better: pooling motion information differently for perception or actionNature Neuroscience (2012) 15: 1596-1603
doi:10.1038/nn.3229
fulltext
Stefanescu and Jirsa 2011Stefanescu, R. and Jirsa, V.K.Reduced representations of heterogeneous mixed neural networks with synaptic couplingPhys. Rev. E (2011) 83: 026204
doi:10.1103/PhysRevE.83.026204
Takerkart et al. 2014Takerkart, S., Katz, P., Garcia, F., Roux, S., Reynaud, A. and Chavane, F.Vobi One: a data processing software package for functional optical imaging.Front. Neurosci. (2014) 8:2
doi:10.3389/fnins.2014.00002
fulltext
Taouali et al. 2015Taouali, W., Benvenuti, G., Wallisch, P., Chavane, F. and Perrinet, L. U. Testing the Odds of Inherent versus Observed Over-dispersion in Neural Spike CountsJournal of Neurophysiology (2015)
doi:10.1152/jn.00194.2015
abstract
Tauste Campo et al. 2015Tauste Campo, A., Martinez-Garcia, M., Nacher, V., Luna, R., Romo, R. and Deco, G.Task-driven intra- and interarea communications in primate cerebral cortexProc. Natl. Acad. Sci. USA (2015) 112(15):4761-4766
doi:10.1073/pnas.1503937112
abstract
Tetzlaff et al. 2012Tetzlaff, T., Helias, M., Einevoll, G. T. and Diesmann, M. Decorrelation of Neural-Network Activity by Inhibitory FeedbackPLoS Comput Biol (2012) 8(8): e1002596
doi:10.1371/journal.pcbi.1002596
fulltext
Torre et al. 2013Torre E, Picado-Muiño D, Denker M, Borgelt C, Grün S.Statistical evaluation of synchronous spike patterns extracted by frequent item set miningFront Comput Neurosci. (2013) 7:132.
doi:10.3389/fncom.2013.00132
fulltext
Touboul el al. 2011Touboul, J., Hermann, G. and Faugeras, O.Noise-Induced Behaviors in Neural Mean Field DynamicsSIAM J. Applied Dynamical Systems (2012) 11(1): 49-81
doi:10.1137/110832392
abstract, fulltext, BibTeX
Tully et al. 2014Tully, P. J., Hennig, M. H. and Lansner, A.Synaptic and Nonsynaptic Plasticity Approximating Probabilistic InferenceFront. Synaptic Neurosci. (2014) 6:8
doi:10.3389/fnsyn.2014.00008
fulltext
van Albada et al. 2015van Albada, S.J., Helias, M. and Diesmann, M.Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and CorrelationsPLoS Comput Biol (2015) 11(9): e1004490
doi:10.1371/journal.pcbi.1004490
van Kerkoerle et al. 2014van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C. and Roelfsema, P.R.Alpha and gamma oscillations characterize feedback and feedforward processing in monkey visual cortexPNAS (2014) 111(40): 14332-14341
doi:10.1073/pnas.1402773111
abstract, fulltext
Vasquez et al. 2012Vasquez, J.-C., Palacios, A., Marre, O., Berry II, M. J. and Cessac, B.Gibbs distribution analysis of temporal correlations structure in retina ganglion cellsJ. Physiol. Paris (2012) 106(4):120-127
doi:10.1016/j.jphysparis.2011.11.001
(fulltext), BibTeX
Vella et al. 2014Vella, M., Cannon, R.C., Crook, S., Davison, A.P., Ganapathy, G., Robinson, H.P.C., Silver, R.A. and Gleeson, P.libNeuroML and PyLEMS: using Python to combine procedural and declarative modelling approaches in computational neuroscienceFrontiers in Neuroinformatics (2014) 8: 38
doi:10.3389/fninf.2014.00038
abstract
Veltz 2011Veltz, R.An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delaysComptes Rendus Mathematique (2011) 349:749-752
doi:10.1016/j.crma.2011.06.014
fulltext, BibTeX
Veltz 2013Veltz, R. Interplay between constant delays and propagation delays in neural fields equationsSIAM Journal on Applied Dynamical Systems (2013) 12(3): 1566-1612
doi:10.1137/120889253
abstract, (fulltext)
Veltz and Faugeras 2013Veltz, R. and Faugeras, O.A Center Manifold Result for Delayed Neural Fields EquationsSIAM J. Math. Anal. (2013) 45(3): 1527-1562
doi:10.1137/110856162
abstract, fulltext
Veltz and Faugeras 2011Veltz, R. and Faugeras, O.Stability of the stationary solutions of neural field equations with propagation delaysThe Journal of Mathematical Neuroscience (2011) 1:1
doi:10.1186/2190-8567-1-1
abstract, fulltext, BibTeX
Veltz and Faugeras 2014Veltz, R. and Faugeras, O.Erratum: A Center Manifold Result for Delayed Neural Fields EquationsSIAM Journal of Mathematical Analysis (In press)
Vlachos et al. 2013Vlachos A, Helias M, Becker D, Diesmann M, Deller T.NMDA-receptor inhibition increases spine stability of denervated mouse dentate granule cells and accelerates spine density recovery following entorhinal denervation in vitroNeurobiol Dis. (2013) ;59:267-76.
doi:10.1016/j.nbd.2013.07.018
Vogels et al 2013T. P. Vogels, R. C. Froemke, N. Doyon, M. Gilson, J. S. Haas, R. Liu, A. Maffei, P. Miller, C. J. Wierenga, M. A. Woodin, F. Zenke and H. SprekelerInhibitory synaptic plasticity: spike timing-dependence and putative network functionFrontiers In Neural Circuits (2013) : 7
doi:10.3389/fncir.2013.00119
fulltext
Voges and Perrinet 2012Voges, N. and Perrinet, L.Complex dynamics in recurrent cortical networks based on spatially realistic connectivitiesFront. Comput. Neurosci. (2012) 6:41
doi:10.3389/fncom.2012.00041
abstract, fulltext
Vogginger et al. 2015Vogginger, B., Schüffny, R., Lansner, A., Cederström, L., Partzsch, J. and Höppner, S.Reducing the computational footprint for real-time BCPNN learningFront. Neurosci. (2015) 9:2
doi:10.3389/fnins.2015.00002
abstract, fulltext
Wagatsuma et al. 2011Wagatsuma, N., Potjans, T.C., Diesmann, M. and Fukai, T.Layer-dependent attentional processing by top-down signals in a visual cortical microcircuit modelFront. Comput. Neurosci. (2011) 5:31
doi:10.3389/fncom.2011.00031
abstract, fulltext
Yousaf et al. 2013M. Yousaf, B. Kriener, J. Wyller, G.T. EinevollGeneration and annihilation of localized persistent-activity states in a two-population neural-field modelNeural Networks (2013) 46}:75-90
doi:10.1016/j.neunet.2013.04.012
abstract
Yousaf et al. 2013bM. Yousaf, J. Wyller, T. Tetzlaff, G.T. EinevollEffect of localized input on bump solutions in a two-population neural-field modelNonlinear Analysis Series B: Real World Applications (2013) 14:997-1025
doi:10.1016/j.nonrwa.2012.08.013
abstract
Zenke and Gerstner 2014Zenke, F. and Gerstner, W.Limits to high-speed simulations of spiking neural networks using general-purpose computersFront. Neuroinform. (2014) 8:76
doi:10.3389/fninf.2014.00076
fulltext
Zenke et al. 2013Zenke, F., Hennequin, G. and Gerstner, W.Synaptic Plasticity in Neural Networks Needs Homeostasis with a Fast Rate DetectorPLoS Comput Biol (2013) 9(11): e1003330
doi:10.1371/journal.pcbi.1003330
Zenke et al. 2015Zenke, F., Agnes, E.J. and Gerstner, W.Diverse synaptic plasticity mechanisms orchestrated to form and retrieve memories in spiking neural networksNature Communications (2015) 6: 6922
doi:10.1038/ncomms7922
fulltext
Ziegler et al. 2015Ziegler, L., Zenke, F., Kastner, D.B. and Gerstner, W.Synaptic Consolidation: From Synapses to Behavioral ModelingThe Journal of Neuroscience (2015) 35(3): 1319-1334
doi:10.1523/JNEUROSCI.3989-14.2015
abstract, fulltext

Review

Crook et al. 2012Crook, S. M., Bednar, J. A., Berger, S., Cannon, R., Davison, A. P., Djurfeldt, M., Eppler, J., Kriener, B., Furber, S., Graham, B., Plesser, H. E., Schwabe, L., Smith, L., Steuber, V. and van Albada, S.Creating, documenting and sharing network modelsNetwork: Computation in Neural Systems (2012) 23(4): 131-149
doi:10.3109/0954898X.2012.722743
abstract, fulltext
Einevoll et al. 2013G.T. Einevoll, C. Kayser, N. Logothetis, and S. PanzeriModeling and analysis of local field potentials for studying the function of cortical circuitsNature Reviews Neuroscience (2013) 14:770-785
doi:10.1038/nrn3599
abstract, (fulltext), BibTeX
Estebanez et al. 2014Estebanez, L., Boustani, S. E. and Shulz, D. E. What the whiskers tell the tactile brainMed Sci (2014) 30: 93-98
doi:10.1051/medsci/20143001019
abstract
Gerstner et al. 2012Gerstner, W., Sprekeler, H. and Deco, G.Theory and Simulation in Neuroscience (access to fulltext via the researchers website)Science (2012) 338 (6103): 60-65
doi:10.1126/science.1227356
abstract, (fulltext)

Book chapter

Bedard and Destexhe 2014Bedard, C. and Destexhe, A.Local Field Potential: Interaction with the extracellular medium. In: Encyclopedia of Computational NeuroscienceIn: Encyclopedia of Computational Neuroscience, Edited by Jaeger D and Jung R. Springer, New York, (2014): 1-10 abstract
Bedard and Destexhe in pressBedard, C. and Destexhe, A.Modeling local field potentials and their interaction with the extracellular mediumin: Handbook of Neural Activity Measurement, Edited by Brette, R. and Destexhe, A., Cambridge University Press, Cambridge, UK, ISBN:9780521516228
Cessac and Palacios 2012Cessac, B. and Palacios, A.Spike train statistics from empirical facts to theory: the case of the retinaModeling in Computational Biology and Biomedicine: A Multidisciplinary Endeavor, Springer-Verlag (2012) fulltext, BibTeX
Crook et al. 2013Crook., S. M., Davison, A. P. and Plesser, H. E. Learning from the past: approaches for reproducibility in computational neuroscienceIn: J.M. Bower (Ed.), 20 Years of Computational Neuroscience, Springer, ISBN 978-1-4614-1423-0
doi:10.1007/978-1-4614-1424-7_4
abstract
Davison et al. 2014Davison, A.P., Mattioni, M., Samarkanov, D. and Telenczuk, B.Sumatra: A Toolkit for Reproducible ResearchIn: Implementing Reproducible Research (2014), edited by V. Stodden, F. Leisch and R.D. Peng, Chapman & Hall/CRC: Boca Raton, Florida., pp. 57-79 abstract
Destexhe 2013Destexhe, A.20 Years of "Noise": Contributions of Computational Neuroscience to the Exploration of the Effect of Background Activity on Central NeuronsIn: 20 Years of Computational Neuroscience Springer Series in Computational Neuroscience (2013) 9: 167-186
doi:10.1007/978-1-4614-1424-7_8
abstract
Destexhe and Rudolph-Lilith 2014Destexhe, A. and Rudolph-Lilith, M.Noisy dendrites: Models of dendritic integration in vivo. In: The Computing Dendrite, Edited by Cuntz, H., Remme, M.W.H. and Torben-Nielsen, B., Springer, New York, pp. 173-190, 2014, ISBN 978-1-4614-8093-8 abstract
Devor et al. 2012Devor, A., Boas, D.A., Einevoll, G.T., Buxton, R.B. and Dale, A.M. Neuronal Basis of Non-Invasive Functional Imaging: From Microscopic Neurovascular Dynamics to BOLD fMRIAdvances in Neurobiology (2012) 4: 433-500
doi:10.1007/978-1-4614-1788-0_15
abstract
Einevoll et al. 2013bG.T. Einevoll, H. Linden, T. Tetzlaff, S. Leski, K.H. PettersenLocal field potential: biophysical origin and analysisPrinciples of Neural Coding, pp. 37-59, edited by R. Quian Quiroga and S. Panzeri, CRC Press, 2013
Einevoll et al. 2013dEinevoll, G., Lindén, H., Tetzlaff, T., Leski, S., and Pettersen, K.Local field potentials: biophysical origin and analysisin Quiroga and Panzeri (ed.) Principles of Neural Coding. Taylor & Francis CRC Press (2013): 37-59
Lansner and Diesmann 2012Lansner, A. and Diesmann, M. Virtues, Pitfalls, and Methodology of Neuronal Network Modeling and Simulations on SupercomputersComputational Systems Neurobiology, Editors N. Le Novère, ISBN: 978-94-007-3857-7 (Print) 978-94-007-3858-4 (Online) (2012): 283-315 abstract
Lundqvist et al. 2013bLundqvist M, Herman P, Lansner AAttractor Hypothesis of Associative Cortex : Insights from a Biophysically Detailed Network ModelIn: Signorelli F, Chirchiglia D, editors. Functional Brain Mapping and the Endeavor to Understand the Working Brain. InTech (2013). pp. 156-179
doi:10.5772/50860
Pettersen et al. 2012Pettersen, K.H., Linden, H., Dale, A.M. and Einevoll, G.T. Extracellular spikes and CSD Handbook of Neural Activity Measurement, edited by R. Brette and A. Destexhe, Cambridge, 2012: 92-135
Book URL: http://www.cambridge.org/gb/knowledge/isbn/item6698760/?site_locale=en_GB
Pettersen et al. 2013Pettersen, K. H., Linden, H., Dale, A.M. and Einevoll, G. T.Extracellular spikes and current-source densityin Handbook of Neural Activity Measurement, edited by Romain Brette and Alain Destexhe, ISBN: 9780521516228, Published September 2012 fulltext
Shulz and Feldman in pressShulz, D.E. and Feldman, D. Spike Timing Dependent Plasticity in DevelopmentIn: Neural Circuit Development and Function in the Healthy and Diseased Brain, 1st Edition: Comprehensive Developmental Neuroscience. (P. Rakic and J Rubenstein). (2013)
Print Book ISBN : 9780123972675, eBook ISBN : 9780123973467
abstract
van Albada et al. 2014van Albada, S., Helias, M. and Diesmann, M. Integrating brain structure and dynamics on supercomputers"Springer Cham Heidelberg New York Dordrecht London
ISBN: 978-3-319-12083-6 (print), 978-3-319-12084-3 (electronic)

Lecture Notes in Computer Science 8603, 22-32 (2014) [10.1007/978-3-319-12084-3_3] "

doi:10.1007/978-3-319-12084-3_3
fulltext

Conference organisation

Denker 2013bDenker, M.Why workflows become important to usWorkshop New Perspectives on Workflow and Data Management for the Analysis of Electophysiological Data, December 2013, Jülich, Germany abstract

Conference contribution: talk

Vanzetta I, Bermudez MA, Deneux T, Barthelemy F, Masson GS Interaction of color, motion and contrast in macaque V4 population activity and behavior.Computational and Systems Neuroscience (Cosyne) 2014, Salt Lake City, USA
Bahuguna2015Bahuguna, J.Functional classification of homologous networks in basal-ganglia: a modeling study2nd International Symposium of the Clinical Research Group 219, Cologne, Germany, 02/26/2015 - 02/28/2015
Bakker and Diesmann 2014Bakker, R., Thomas, W. and Diesmann, M. Do gold standards remain gold standards when compiling a large number of published tract-tracing studies into a connectivity database?Neuroinformatics 2014, Leiden, Netherlands, 25 Aug - 27 Aug, 2014., INCF2014, Leiden, Netherlands, 08/25/2014 - 08/27/2014
doi:10.3389/conf.fninf.2014.18.00072
fulltext
Bakker2013Bakker, R.Can we build a 'Google earth' for the brain?
Imaging the brain at different scales: How to integrate multi-scale structural information?, Antwerp, Belgium, 09/02/2013 - 09/06/2013
Bos and Helias 2014Bos, H. and Helias, M. The origin of population rate oscillations in spiking neural networksHeraeusSeminar on The Versatile Action of Noise: From Genetic to Neural Circuits, Bremen, Germany, 06/22/2014 - 06/27/2014
Canova 2013Canova, C.Quantification of worm detection3rd Vision4Action Workshop. Marseille, France (2013)
Chavane 2012Chavane, F. Scale dependent input normalization in V1 of the awake monkey: involvement of intra and/or inter-cortical networks. College of Optometry, State University of New York, NY (USA) (2012
Chavane 2012bChavane, F. Scale dependent input normalization in V1 of the awake monkeyNeurobiology Department, Yale University, New Haven (USA) (2012)
Chavane 2012cChavane, F. Scale dependent input normalization in V1 of the awake monkey: what VSDI population response dynamics tell us...Center for Neural Science, New York University (USA) (2012)
Chavane 2012dChavane, F. Scale dependent input normalization in V1 of the awake monkey: involvement of intra and/or inter-cortical networksNetherlands Institute of Neurosciences, Amsterdam (Netherlands) (2012)
Chavane 2013Chavane, F.Functional roles of lateral interactions in the visual cortexCentral European University, Budapest (Hongrie) (2013)
Chavane 2013bChavane, F.Dynamics of scale-dependent input normalization in V1 of the awake monkeyEuropean Winter Conference on Brain Research, Brides les Bains (France) (2013)
Chavane 2013cChavane, F.Functional relevance of activity propagation in V1SIAM Conference on Applications of Dynamical System, Snowbird, Utah (USA) (2013)
Dahmen 2014Dahmen, D.From spiking point-neuron networks to LFPs: a hybrid approach5th Active Vision Workshop, Jülich, Germany, 06/11/2014 - 06/13/2014
Davison 2011Davison, A.Using PyNN and NineMLTalk at CNS*2011 Workshop: Emerging standards for network modeling
Davison 2013Davison, A.Provenance tracking for complex data analysis workflows in neuroscience10th Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, March (2013).
Davison 2013bDavison, A.PyNN: a simulator-independent platform for large scale, data-driven neuronal simulationsCosyne workshops, Snowbird, Utah, USA, March (2013)
Deco 2013Deco, G.The dynamical structure of brain fluctuations at restOrganization for the Human Brain Mapping, Seattle, USA (2013)
Deco 2013bDeco, G.The link between structure and function in the brain: the resting stateEuropean Conference on Complex Systems, Barcelona, Spain (2013)
Deco 2013cDeco, G.The importance of being balancedWorkshop on Advances in neural mass modeling, Computational Neuroscience meeting, Paris, France (2013)
Deco 2014Deco, G.Linking the structural and functional human connectome4th Frontiers in Neuromorphic Computing, Heidelberg, Germany (2014)
Denker 2011Denker MChallenges for workflows in complex electrophysiology projectsShort talk at INCF 2011 Datasharing in Electrophysiology Task Force Meeting, Boston
Denker 2012Denker, M.Implementing workflow strategies at INM-6Talk at the 2nd Vision4Action Workshop; INT, CNRS-AMU, Marseille, France; 06/20/2012-06/20/2012
Denker 2012bDenker, M.Implementing workflow strategiesTalk at the 2nd Active Vision Workshop; Jülich, Germany; 11/15/2012-11/17/2012
Denker 2012cDenker, M.Rate vs. Synchrony - How the verification of correlation analysis inflates workflow complexityTalk at the 1st INCF Workshop on Validation of Data-Analysis Methods; Stockholm, Sweden; 6/19/2012
Denker 2013Denker, M.Linking the spatial structure of precise spike synchronization and local field potentials in motor cortexProceedings of the 10th Meeting of the German Neuroscience Society, Neuroforum (2013): S24-2
Denker 2014cDenker, M.Utilizing e-phys data and metadata in the Neo frameworkNeurodata without Borders Hackathon, Janelia Farms, Ashburn, VA, USA 20.-22. Nov 2014
Denker et al. 2012bDenker, M., Zehl, L., Brochier, T., Grün, S., Riehle, A.
Comparing the spatio-temporal organization of joint spiking and local field potential oscillations in motor cortex
Twenty First Annual Computational Neuroscience Meeting: CNS*2012, Decatur, GA, USA; BMC Neuroscience 2012, 13(Suppl 1):P127
doi:10.1186/1471-2202-13-S1-P127
abstract
Denker et al. 2014Denker, M., Abrams, M., Wachtler, T., Davison, A. and Grün, S. INCF workshop report: New perspectives on workflows and data management for the analysis of electrophysiological data.Neuroinformatics 2014, Leiden, Netherlands, 08/25/2014 - 08/27/2014
doi:10.3389/conf.fninf.2014.18.00021
abstract
Denker et al. 2014bDenker, M., Zehl, L., Yegenoglu, A., Wachtler, T., Davison, A. and Grün, S. Improving Workflows and Data Management for the Analysis of Electrophysiological DataAdvances in Neuroinformatics 2014, AINI2014, Wako-shi, Japan, 09/25/2014 - 09/26/2014
Denker2013Denker, M.Linking the spatial structure of precise spike synchonization and local field potentials in motor cortex
10th Meeting of the German Neuroscience Society (NWG) 2013, Göttingen, Germany, 03/13/2013 - 03/16/2013
Denkeret al 2013bDenker, M. ; Grün, S.Relationship of spiking activity & synchrony to LFP
Workshop on 'Modeling and Analysis of LFP', Ski, Norway, 01/08/2013 - 01/09/2013
Destexhe 2013bDestexhe, A.How to reconcile macroscopic brain signals with neuronal unit activity?Dynamics of Neuronal Systems, Freiburg, Germany. March (2013). (Invited speaker)
Destexhe 2013cDestexhe, A. Frequency scaling of human and monkey LFP Scale-Free Dynamics and Networks in Neurosciences, Montreal, Canada (2013) (Invited speaker)
Diesmann 2012 aDiesmann, M. Active decorrelation in local cortical networksBiology and Physics of Information Processing ; Nordita, Stockholm ; Sweden ; 04/16/2012 - 05/11/2012
Diesmann 2012bDiesmann, M. Brain-scale neuronal network simulations on K4th Biosupercomputing Symposium ; Tokyo ; Japan ; 12/03/2012 - 12/05/2012
Diesmann 2012cDiesmann, M. Decorrelation of neural-network activity by inhibitory feedbackVariance & Invariants in Brain and Behavior ; TECHNION, Haifa ; Israel ; 05/21/2012 - 05/23/2012
Diesmann2013Diesmann, M.From local to brain-scale models at cellular and synaptic resolution
CENEM San Pedro Workshop, San Pedro de Atacama, Chile, 10/23/2013 - 10/25/2013
Diesmann2013bDiesmann, M.Future plans on meso/macro measures from cellular resolution
Modeling and Analysis of LFP, Ski, Norway, 01/08/2013 - 01/09/2013
Diesmann2013cDiesmann, M.
Integrating brain structure and dynamics with spiking neuronal network models
Workshop on Brain Inspired Computing, Cetraro, Italy, 7/08/2013 - 07/11/2013
Diesmann2013dDiesmann, M.Relating structure and activity in a full-scale local cortical network model
Computational and Systems Neuroscience (Cosyne) 2013, Snowbird, USA, 03/04/2013 - 03/05/2013
Diesmann2013eDiesmann, M.Some further insights on the correlation structure of cortex and supercomputers as instruments of neuroscience
Brain Week, Bern, Switzerland, 03/11/2013 - 03/17/2013
Diesmann2013fDiesmann, M.Theorie und Simulation grosser neuronaler Netzwerke
Brain Week, Bern, Switzerland, 03/11/2013 - 3/17/2013
Diesmann2013gDiesmann, M.Use cases for interactive supercomputing in computational neuroscience
HBP workshop Interactive Supercomputing, Frankfurt, Germany, 09/30/2013 - 10/01/2013
Diesmann2014Diesmann, M.The K computer as an instrument to study brain-scale neuronal networks at microscopic resolutionFujitsu HPC Forum, Tokyo, Japan, 08/26/2014 - 08/26/2014
Diesmann2014bDiesmann, M.HBP - HUMAN BRAIN PROJECT - SP4: Mathematical and Theoretical Foundations of Brain Research and SP6: Brain Simulation PlatformHBP - Human Brain Project - SP4, The Hague, Netherlands
Diesmann2014cDiesmann, M.My brain is finiteThe European Institute for Theoretical Neuroscience (EITN) inauguration, Paris, Frankreich
Diesmann2014dDiesmann, M.Towards brain-scale spiking network modelsMaastricht, Netherlands,
Diesmann2014eDiesmann, M.Cortical multi-area multi-layer network models: data integration and simulation technologySeattle, USA (2014)
Diesmann2014fDiesmann, M.Simulation of brain-scale neuronal networks at cellular and synaptic resolution4th HPC-Status Conference of the Gauss-Allianz, Aachen, Germany, 12/04/2014 - 12/05/2014
Diesmann2014gDiesmann, M.A full-scale spiking model of the local cortical networkAlghero, Sardinia, Italy, 05/14/2014 - 05/16/2014
Diesmann2014hDiesmann, M.A full-scale spiking model of the local cortical networkMaastricht, The Netherlands
Diesmann2014iDiesmann, M.Simulation of brain-scale neuronal networks at cellular and synaptic resolutionNeuroVisionen 10, Juelich, Germany, 09/26/2014
Diesmann2014jDiesmann, M.Spiking network simulation code for the peta scaleBrainScaleS, Heidelberg, Germany,
Einevoll 2013aGaute T. EinevollHow local is the local field potential?BioQuest 2013, Amritapuri, India, 11.-14.08.2013. Invited
Einevoll 2013bGaute T. EinevollHow do spike correlations affect the measured local field potential (LFP)?"Network neuroscience: Structure and dynamics". Workshop associated with CNS*2013, Paris
17.-18.07.2013
Einevoll 2013cGaute T. EinevollHow do spike correlations a ffect the measured cortical local eld potential (LFP)?BCCN Freiburg Conference: "Dynamics of neuronal systems", Freiburg,
18.-20.03.2013. Invited.
Einevoll 2013dGaute T. EinevollModeling what you can measure in the brain with modern multielectrodesECMS 2013 European Conference on Modelling and Simulation, NEUROSIM track, Aalesund,
27.-30.05.2013
Einevoll et al. 2013cEinevoll, G. T., Leski, S. and Hagen, E. Tutorial on LFPy: T3: Modeling and interpretation of extracellular potentials CNS 2013, Paris, France abstract
Festa et al. 2014Festa, D., Hennequin, G. and Lengyel, M.Analog Memories in a Balanced Rate-Based Network of E-I NeuronsTalk given at the Advances in Neural Information Processing 2014 (NIPS 2014), Paper appeared in the Advances in Neural Information Processing Systems 27 (2014) fulltext
Fregnac 2012Frégnac, Y.Biological Foundations of neuromorphic computationInternational MemCo Workshop: "Memristors for Computing" (2012), Frejus, France. Invited
Fregnac 2012bFrégnac, Y.Functional polymorphy of visual cortex : from "crystal" to "smoke".Keynote speaker in International Workshop on Bioinspired Systems and Prosthetic Devices (Bio-Pro) (2012), Taiwan. Invited.
Fregnac 2012cFrégnac, Y.Foundations of Neuromorphic Computation: What Physics and Computer Science can learn from Brain studiesOrganized by Labex MS2T (Maîtrise de Systèmes de Systèmes Technologiques) de l'Université de Technologie de Compiègne France (2012). Invited.
Fregnac 2012dFrégnac, Y.Calcul Neuromorphique : émergence des principes de liage perceptif de la "Gestalt"In Modéliser le Cerveau (organized by P. Chauvel, R. Pumain and P. Wending) Réunion d'Hiver de la Société de Neurophysiologie Clinique de Langue Française, (2012) Paris, France. Invited.
Fregnac 2012eFrégnac, Y.Reading out the synaptic echoes of low-level perceptionInternational workshop on "Biological and Computer Vision Interfaces" at ECCV (2012), Organized by P. Kronbropst and O. Faugeras, Florence, Italy. Invited.
Fregnac 2012fFrégnac, Y.Meso/Micro-scale interactions in cortical visual processing: one step closer to Gestalt4th Binational Meeting of France-Israel Neuroscience (2012), FINEPS, Aussois. Invited
Fregnac 2012gFrégnac, Y.Revisiting the visual cortical receptive field : one step closer to Gestalt.International Workshop on recent advances in dynamical systems and applications (2012). Org. O. Faugeras and G. Faye. IBRIA, Sophia-Antipolis, Invited.
Fregnac 2013Fregnac, Y.Central neurobiological issues in Neuromorphic computation : Noise and PlasticityCapoCaccia Cognitive Neuromorphic Engineering Workshop, Sardinia (2013) Invited speaker
Fregnac 2013bFregnac, Y.Searching for a fit between the "silent" surround of V1 receptive fields and eye-movementsSymposium: Active Perception: The synergy between perception and action (2013), Organizer: Michele Rucci and Eli Brenner, Boston University and VU University abstract
Fregnac 2013cFregnac, Y.Multiscale complexity in the visual cortical receptive field. In International Symposium "Visual Processing Beyond the Classical Receptive Field", Re-He Palace, Chengde city, China. Invited Keynote Conference
Fregnac 2013dFregnac, Y.Synaptic echoes of low-level perception UESTC (2013), Chengdu, China. Invited Conference.
Fregnac 2013eFregnac, Y.Visions de l'Intérieur : quand l'oeuvre d'art « résonne « avec l'architecture perceptive du Cerveau. In. Le geste du peintre : matériaux, perception, émotion. Journée d'étude du LAMS. Orgs. P. Walter and JP Changeux. Paris (2013). Invited Conference.
Fregnac 2013fFregnac, Y.Reconstructing low-level perception from synaptic echoes in V1. In: 4th European Visual Cortex Meeting (2013). St Cross Castle, Sr Kriz Zacretje, Croatie. Invited Conference.
Fregnac 2013gFregnac, Y.Propagation Belief in Visual cortical networks : a possible neural implementation of Gestalt laws. In "Neuroscience of Cognition, Computation and Decisions" Virginia Tech, Riva San Vitale, Ticino, Switzerland (2013). Invited Conference.
Grün 2012Grün, S.Interaction of Spike-Synchrony and the Local Field PotentialInvited Talk, University College London, United Kingdom; 11/29/2012.
Grün 2012bGrün, S.Data Driven Analysis of Spatio-Temporal Cortical Interaction5th INCF Neuroinformatics Congress 2012 ; Munich ; Germany ; 09/10/2012 - 09/12/2012
Grün 2012cGrün, S.Worms and BraidsTalk at the 2nd Vision4Action Workshop; INT, CNRS-AMU, Marseille, France; 06/20/2012
Grün 2012dGrün, S.Dynamics and Interaction in the Cortical NetworkTalk at the 7th Winter School IRTG 1328; RWTH Aachen, Germany; 11/02/2012
Grün 2012eGrün, S.Calibration and Testing of Spike Correlation MethodsTalk at the 1st INCF Workshop on Validation of Data-Analysis Methods; Stockholm, Sweden; 6/19/2012
Grün 2013Grün, S.Correlation Analysis of Parallel Spike Trains I. + II.Berkeley Summer Course inMining and Modeling of Neuroscience Data (2013)
Grün 2013bGrün, S.Data-driven evaluation of functional correlations in (massively) parallel spike trainsIntern. Workshop on Brain-Inspired Computing. Cetraro, Italy. (2013)
Grün 2013cGrün, S.Dynamic Interactive Processing in the Biological Neuronal NetworkSFB 917 - Seminar. Aachen, Germany (2013)
Grün 2013dGrün, S.Effect of Spike Sorting Errors on Unitary Event Analysis2nd Vision for Action Workshop. Jülich, Germany (2013)
Grün 2013eGrün, S.Frequent Itemset Mining based Detection of Synchronous Spike Events in Massively Parallel Spike Trains2nd J-G Project Meeting. Kyoto, Japan(2013)
Grün 2013fGrün, S.Multi-Channel Spike Correlation AnalysisTutorial "Statistical Methods", INM Retreat 2013
Grün 2013gGrün, S.Spatio-Temporal Scales of Neuronal Interactions11e Colloque Societe des Neurosciences. Lyon, France (2013)
Grün 2013hGrün, S.Statistical Evaluation of Synchronous Spike Patterns extracted by Frequent Item Set MiningModeling Neural Activity: Statistics, Dynamical Systems, and Networks. Lihue, Hawaii, USA. (2013)
Grün 2013iGrün, S.Statistical Methods for the Analysis of Multi-Channel Spike and LFP DataWorkshop Tools for the Analysis of Functional Data. Paris, France (2013)
Grün 2013jGrün, S.Uncovering Spatio-Temporal Cortical Interaction: Current activities, open problemsHBP Data Analysis - Visualization Coordination Meeting. Jülich, Germany (2013)
Grün 2014aGrün, S.Statistics and Workflows for the Analysis of Concerted Neuronal Activity During Complex BehaviorSymposium 'Active Vision in Natural Environments'. Osaka Univ, Japan, Dec 12, 2014
Grün 2014eGrün, S.Towards reproducible data analysis of massively parallel neuronal data during complex behavior5th Annual Meeting of the GDR Multielectrods, Gif sur Yvette, France, 10/14/2014 - 10/15/2014
Grün 2014gGrün, S.Talk: Statistical methods for detection of assembly activity in massively parallel spike dataAREADNE 2014 - Research in Encoding And Decoding of Neural Ensembles, Nomikos Conference Centre Santorini, Greece
Grün 2015Grün, S.Towards Reproducible Analysis of Complex Electrophysiological ExperimentsCommunity Session 'Reproducilibity in the neurosciences'. Univ Goettingen, Goettingen, Germany. March 19, 2015
Grün2013Grün, S.Human Brain Project - Scientific goals, Organization, Our role
Wissenswerte, Bremen, Germany, 11/25/2013 - 11/25/2013
Grün2013bGrün, S.Spike Synchrony and Spike-LFP Locking in Monkey Primary Visual Cortex during Free Viewing of Natural Scenes
Computational Neuroscience, Paris, France, 07/17/2013 - 07/17/2013
Grytskyy et al. 2012Grytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M. Unifying propagators and covariances of network models by Ornstein-Uhlenbeck process12th Granada* Seminar - Physics, Computation and the Mind - Advances and Challenges at Interfaces ; La Herradura ; Spain ; 09/17/2012 - 09/21/2012 abstract
Grytskyy et al. 2012bGrytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M.Unification of covariances in different neuron network models through the mapping onto Ornstein-Uhlenbeck processApplied Mathematics, Control and Informatics, Belgorod, Russia, 10/03/2012 - 10/05/2012
Grytskyyet al 2013cGrytskyy, D. ; Tetzlaff, T. ; Diesmann, M. ; Helias, M. Covariances in neural networks in linear approximation
Donders Discussion 2013, Nijmegen, Netherlands, 10/31/2013 - 11/01/2013
Hagen 2014Hagen, E.LFPy and hybrid scheme for local field potentials. CNS2014 tutorial T4: Modeling and analysis of extracellular potentialsCNS 2014 Québec City: July 26-31, 2014, CNS2014, Quebec City, Candada, 07/26/2014 - 07/31/2014
Helias 2013Helias, M.Structure and invariance of correlations in balanced networks
BCCN workshop 'Dynamics of Neuronal Systems', Freiburg, Germany, 06/18/2013 - 06/20/2013
Helias et al. 2014aHelias, M., Kunkel, S., Morrison, A. and Diesmann, M. NEST, simulation technology for brain-scale networks at cellular and synaptic resolutionSOS18 Conference on distributed supercomputing, St. Moritz, Switzerland, 03/17/2014 - 03/20/2014
Kunkel et al. 2014cKunkel, S., Helias, M., Diesmann, M. and Morrison, A. Specifying supercomputers for brain-scale neuronal network simulationsHPC for Life Science, Brussels, Belgium, 05/26/2014 - 05/27/2014
Kunkel et al. 2014dKunkel, S., Helias, M., Diesmann, M. and Morrison, A. Supercomputer simulations of spiking neuronal networksProgress on Brain-Like Computing, Stockholm, Sweden, 02/05/2014 - 02/06/2014
Kunkelet al 2013Kunkel, S. ; Diesmann, M.Simulation technology at cellular and synaptic resolution for the largest computers
EU - US workshop on Cortical Processors, Heidelberg, Germany, 10/14/2013 - 10/15/2013
Masson 2012Masson, G. S.Optimal encoding of speed information for tracking eye movementsWorkshop on "Optimizing performance in dynamics environment" Amsterdam, NL, 2-5 July 2012
Masson 2012bMasson, G. S.Speed processing for ocular tracking and motion perception : same or different ? CESAME, Departement de Neurosciences. Université Catholique de Louvain. Louvain, Belgique, 26 October 2012
Masson 2012cMasson, G. S.Behavioral receptive fields and cortical population dynamics.Departemento de Electronca, Universidad Téchnica Federico Santa Maria, Valparaiso, Chili, 30 October 2012
Masson 2012dMasson, G. S.Behavioral receptive fields and cortical population dynamicsHertie Institute for Brain Research. Tübingen. Germany. December 6th, 2012
Maximov2013Maximov, A.Toward a large-scale spiking network model of the rodent barrel cortex
3rd BrainScaleS Plenary Meeting, Marseille, France, 03/21/2013 - 03/22/2013
Meyes and Ito 2014Meyes, R. and Ito, J. Effects of Complex Background Sceneson Object Selectivity of Single UnitActivities in the Macaque IT cortex5th Active Vsion Workshop, Juelich, Germany, 06/11/2014 - 06/13/2014
Meyes and Ito 2014cMeyes, R. and Ito, JActive Vision Progress Report - Spiking Activity and Data Suitability6th Active Vsion Workshop, Osaka, Japan, 12/10/2014 - 12/12/2014
Meyes and Ito 2014dMeyes, R. and Ito, JActive Vision Progress Report - Free Viewing on Full Field Grating Stimuli6th Active Vsion Workshop, Osaka, Japan, 12/10/2014 - 12/12/2014
Monier and Fregnac 2012Monier, C. and Frégnac, Y.Multiscale study of the reliability of visually evoked cortical dynamics and its dependency on input statisticsInternational Symposium on Sensory Coding and Natural Environment 2012, IST, Vienna, Austria (Invited)
Nowke et al. 2013Nowke, C., Schmidt, M., van Albada, S. J., Eppler, J. M., Bakker, R., Diesmann, M., Hentschel, B. and Kuhlen, T. VisNEST - Interactive Analysis of Neural Activity DataBioVis Symposium at the IEEE BioVis 2013, 13-18 Oct. 2013, Atlanta, Georgia, USA
Perrinet and Bednar 2014Perrinet, L.U. and Bednar, J.Sparse Coding Of Natural Images Using A Prior On Edge Co-Occurences. European Signal Processing Conference 2015 (EUSIPCO 2015), Nice, France, 2015
Potjans Tet al 2013Potjans, T. C. ; Diesmann, M.
A minimal cell-type specific model of the cortical microcircuit

Dynamics of Neuronal Systems, Freiburg, Germany, 03/18/2013 - 03/20/2013
Rast et al. 2013Rast, A., Partzsch, J., Mayr, C., Schemmel, J., Hartmann, S., Plana, L., Temple, S., Lester, D., Schueffny, R., Furber, S.A Location-Independent Direct Link Neuromorphic InterfaceInternational Joint Conference on Neural Networks (2013)
doi:10.1109/IJCNN.2013.6706887
Schemmel et al. 2012aSchemmel, J. and Grübl, A. and Kononov, A. and Meier, K. and Millner, S. and Schwartz, M. and Scholze, S. and Schiefer, S. and Hartmann, S. and Partzsch, J. and Mayr, C. and Schüffny, R.Live Demonstration: A Scaled-Down Version of the BrainScaleS Wafer-Scale Neuromorphic SystemIEEE International Symposium on Circuits and Systems 2012
Schmidt et al. 2013cSchmidt, M. ; van Albada, S. ; Bakker, R. ; Diesmann, M.
A spiking multi-area network model of macaque visual cortex
Osaka, Japan, 07/02/2014 - 07/02/2014
Schmidt et al. 2014Schmidt, M., Schücker, J., van Albada, S., Bakker, R., Helias, M. and Diesmann, M. Multi-area network model of visual cortex4th BrainScaleS plenary meeting, Manchester, Grossbritannien, 19 - 21 March 2014
Shulz 2012aShulz D.E. Keep in touch: sensing the world with whiskersPlennary Lecture, 2nd French-Argentinean symposium in Neurosciences (2012) Buenos Aires, Argentina (Invited)
Shulz 2012bShulz, D.E.Neuronal representation of complex multi-whisker tactile scenesFENS satellite symposium on Barrel Cortex Function (2012) Barcelona, Spain. Invited.
Shulz 2012cShulz, D. E.Distributed inputs to the barrel system coupled to multiple single unit recordings in the somatosensory cortexKeynote Speaker, 3rd Workshop GDR 2904, "Multi-electrode recordings and signal processing applied to the study of neuronal networks". Marseille, France (2012) Invited.
Tauste Campo et al. 2014Tauste Campo, A., Martinez Garcia, M., Nacher, R., Romo, R. and Deco, G.Causal correlation paths across cortical areas in decision makingBMC Neuroscience (2014) 15(Suppl. 1): O7
doi:10.1186/1471-2202-15-S1-O7
fulltext
Tetzlaffet al 2013Tetzlaff, T. ; Helias, M. ; Jordan, J. ; Petrovici, M. ; Breitwieser, O. ; Diesmann, M.
Decorrelation of neural-network activity by inhibitory feedback: Mechanism and applications
22nd Annual Computational Neuroscience Meeting (CNS*2013), workshop on "Functional role of correlations: theory and experiment", CNS13, Paris, France, 07/13/2013 - 07/18/2013
Thanasoulis et al. 2014aThanasoulis, V., Vogginger, B., Partzsch, J. and Schüffny, R.A Pulse Communication Flow Ready for Accelerated Neuromorphic ExperimentsISCAS (2014): 265-268
doi:10.1109/ISCAS.2014.6865116
abstract
Thanasoulis et al. 2014bThanasoulis, V., Partzsch, J., Vogginger, B. and Schüffny, R.Configurable Pulse Routing Architecture for Accelerated Multi-Node Neuromorphic SystemsICECS (2014): 738-741
doi:10.1109/ICECS.2014.7050091
abstract
van Albada et al. 2014cvan Albada, S., Helias, M. and Diesmann, M.One-to-one relationship between effective connectivity and correlations in asynchronous networksBernstein Conference, Göttingen, Germany, 09/03/2014 - 09/05/2014
van Albada et al. 2014dvan Albada, S., Schmidt, M. and Diesmann, M. NEST for large-scale simulations of physiology-based spiking networks"Bernstein Network - Simulation Lab Neuroscience" HPC Workshop, Jülich, Germany, 06/04/2014 - 06/05/2014
Wiebelt2012Wiebelt, B.
Trivial Parallelization in a Neuroscience Laboratory
BrainScaleS Workshop on "Workflow design for complex analyses of multi-electrode electrophysiological data", Marseille, France, 06/21/2012 - 06/22/2012

Conference contribution: poster

Medathati, K.N.V., Rankin, J., Kornprobst, P. and Masson, G.S. A retinotopic neural fields model of perceptual switching in 2D motion integrationAnnual Bernstein Conference 24-27 september 2013, Tuebingen, Germany
Antolik and Davison 2013bAntolik, J. and Davison, A.P.Mozaik: a framework for model construction, simulation, data analysis and visualization for large-scale spiking neural circuit modelsNeuroinformatics 2013, Stockholm, Sweden, August (2013)
doi:10.3389/conf.fninf.2013.09.00018
abstract
Bachmannet al 2013Bachmann, C. ; Tetzlaff, T. ; Kunkel, S. ; Bamberger, P. ; Morrison, A.
Computational characteristics of recurrent neural networks under the influence of Alzheimer's disease
10th Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, 03/13/2013 - 03/16/2013
Bachmannet al 2013bBachmann, C., Tetzlaff, T., Kunkel, S., Bamberger, P. and Morrison, A.
Effect of Alzheimer's disease on the dynamical and computational characteristics of recurrent neural networks
22nd Annual Computational Neuroscience Meeting, CNS*2013, Paris, France, 07/13/2013 - 07/18/2013
Bachmannet al 2015Bachmann, C. ; Tetzlaff, T. ; Kunkel, S. ; Morrison, A.
Effect of Alzheimer disease on the dynamical and computational characteristics of recurrent neural networks11th Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, 03/18/2015 - 03/28/2015
Bakker et al. 2014bBakker, R., Thomas, W. and Diesmann, M. Do gold standards remain gold standards when compiling a large number of published tract-tracing studies into a connectivity database?Neuroinformatics 2014, Leiden, Netherlands, 25 Aug - 27 Aug, 2014., INCF2014, Leiden, Netherlands, 08/25/2014 - 08/27/2014
doi:10.3389/conf.fninf.2014.18.00072
fulltext
Bakkeret al 2012Bakker, R. ; Denker, M. ; Diesmann, M. ; Eppler, J. M. ; Grün, S. ; Grytskyy, D. ; Helias, M. ; Ito, J. ; Maximov, A. ; Schmidt, M. ; Tetzlaff, T. ; Torre, E. ; van Albada, S. ; Wiebelt, B. ; Zehl, L.
Planned activities in Jülich
BrainScales Conference, Jülich, Germany, 03/19/2012
Bakkeret al 2013Bakker, R. ; Paul H. E. , T. ; Diesmann, M. ; Thomas, W.
Setting up a web-based neuroscience database has never been easier: The CoCoMac engine goes open source
Neuroinformatics 2013, INCF2013, Stockholm, Sweden, 08/27/2013 - 08/29/2013
Benjaminsson and Lansner 2011Benjaminsson, S. and Lansner, A.Extreme Scaling of Brain SimulationsJülich Blue Gene/P Extreme Scaling Workshop 2011, Technical Report FZJ-JSC-IB-2011-02 available from http://www2.fz-juelich.de/jsc/docs/autoren2011/mohr1/
Bermudez et al. 2012Bermudez, M., Courbonm D., Barthelemym F., Masson, G. S. and Vanzetta, I.Effect of temporal frequency, color and contrast in V4 of the behaving macaque: neuronal responses and behavioral correlatesAbstracts of the 42nd Meeting of the Society for Neuroscience, October 2012, New Orleans, USA (2012)
Bogadhi et al. 2011Bogadhi, A., Montagnini, A. and Masson, G.S.Dynamical interaction between retinal and extra-retinal signals in motion integration for smooth pursuitJournal of Vision (2011) 11(11): article 533
doi:10.1167/11.11.533
abstract
Borgelt et al. 2012bBorgelt, C., Picado-Muino, D., Berger, D., Gerstein, G. and Grün, S. Cell Assembly Detection With Frequent Itemset MiningCNS 2012 ; Decatur ; USA ; 07/21/2012 - 07/26/2012
doi:10.1186/1471-2202-13-S1-P126
abstract
Bos et al. 2014Bos, H., Schmidt, M., Jordan, J., Schücker, J., van Albada, S., Bakker, R., Diesmann, M., Helias, M. and Tetzlaff, T.Cortical multi-layered, multi-area networks as a substrate for stochastic computingHBP Workshop on Stochastic Neural Computation, Paris, France, 11/27/2014 - 11/28/2014
Canova et al. 2015Canova, C;, Torre, E, Denker, M, Helias, M, Gerstein, G and Grün, S.Statistical assessment and neuronal composition of active synfire chainsPoster presentation at German Neuroscience Society Meeting (NWG 2015). Göttingen, Germany. Mar. 21, 2015
Chavane et al. 2012aChavane, F., Reynaud, A., Montardy, Q. and Masson G. S. Cortical origin of contextual modulations in motion integration: linking V1 population response to the behavioral ocular following response Journal of Vision August (2012) 12(9): 758
doi:10.1167/12.9.758
abstract
Dahmen et al. 2013Dahmen, D., Hagen, E., Stavrinou, M. L., Linden, H., Tetzlaff, T., van Albada, S., Diesmann, M., Grün, S. and Einevoll, G. T. From spiking point-neuron networks to LFPs: a hybrid approachBernstein Conference, 25-27 September 2013, Tübingen, Germany
Dahmen et al. 2014Dahmen, D., Hagen, E., Stavrinou, M.L., Lindén, H., Tetzlaff, T., van Albada, S., Diesmann, M., Grün, S. and Einevoll, G.T. Computing local-field potentials based on a point-neuron network model of cat V1SFN Neuroscience 2014, Washington, D.C., United States of America, 11/15/2014 - 11/19/2014
Davison 2011bDavison, A.Collaborative and reproducible simulation and data analysis with SumatraFront. Neuroinform. Conference Abstract: 4th INCF Congress of Neuroinformatics
doi:10.3389/conf.fninf.2011.08.00079
abstract
Davison 2011cDavison, A.Automated tracking of scientific computationsAMP 2011: Reproducible Research-Tools and Strategies for Scientific Computing, Vancouver, Canada, July 2011
Davison et al. 2013Davison, A.P., Djurfeldt, M., Eppler, J.M., Gleeson, P., Hull, M. and Muller, E.B.An integration layer for neural simulation: PyNN in the software forestNeuroinformatics 2013, Stockholm, Sweden, August (2013).
doi:10.3389/conf.fninf.2013.09.00020
abstract
Davison et al. 2013bDavison, A.P., Brizzi, T., Guarino, D., Manette, O.F., Monier, C., Sadoc, G. and Frégnac, Y.Helmholtz: a customizable framework for neurophysiology data management Neuroinformatics 2013, Stockholm, Sweden, 27 Aug - 29 Aug, (2013)
doi:10.3389/conf.fninf.2013.09.00025
abstract
De Haan 2012De Haan, M.Vision for Action: Exploring how visual inputs and motor outputs coordinate to create meaningful actionsTalk at the INT PhD-Day 2012; Marseille, France; 12/13/2012-12/13/2012.
De Haan 2012bDe Haan, M.KINARM, EyeLink & Cerebus - Hardware Setup, Data Flow and Task EnvironmentTalk at the 2nd Vision4Action Workshop; INT, CNRS-AMU, Marseille, France; 06/20/2012-06/20/2012.
Dehghani et al. 2011Dehghani, N., Peyrache, A., Eskandar, E., Madsen, J., Anderson, W., Donoghue, J.,
Halgren, E., Destexhe, A. and Cash, S.
Relationship between excitatory and inhibitory neuronal activity and local field potentials during human sleep.Soc Neurosci Abstracts 37: 451.05
Deneux et al. 2012Deneux, T., Sanz-Leon, P., Masquelier, T., Masson, G. S., Deco, G. and Vanzetta, I. (2012) The spatiotemporal structure of ongoing and evoked activity investigated using optical imaging of voltage sensitive dyes in awake monkey V4AREADNE Meeting, Juin 2012, Santorini, Greece (2012)
Denker et al. 2011aDenker, M., Davison, A., Grün, S. and Diesmann, M. How collaborative projects that involve complicated electrophysiological data sets profit from workflow designPoster at the 4th INCF Congress of Neuroinformatics, Boston, USA
doi:10.3389/conf.fninf.2011.08.00080
fulltext
Denker et al. 2011bDenker, M., Davison, A., Grün, S. and Diesmann, M. Towards guiding principles in workflow design to facilitate collaborative projects involving massively parallel electrophysiological dataBMC Neuroscience 2011, 12(Suppl 1):P131
doi:10.1186/1471-2202-12-S1-P131
fulltext
Denker et al. 2011dDenker, M., Wirtssohn, S., Brochier, T., Grün, S. and Riehle, A.Mapping the synchronization structure of LFP activity in motor cortexPoster at the Ninth Göttingen Meeting of the German Neuroscience Society 2011: T21-9B abstract
Denker et al. 2011eDenker, M., Brochier, T., Grün, S. and Riehle, A.Spatial synchronization structure of field potentials and spikes in a delayed grip taskFront. Comput. Neurosci. (2011) Conference Abstract: BC11 : Computational Neuroscience & Neurotechnology Bernstein Conference & Neurex Annual Meeting 2011
doi:10.3389/conf.fncom.2011.53.00103
abstract
Denker et al. 2012Denker, M., Zehl, L., Brochier, T., Riehle, A. and Grün, S.Spatial organization of joint spiking and local field potential coherence in motor cortex.Poster contribution at conference Neurovisionen 8; Aachen, Germany; 10/26/2012.
Denker et al. 2012aDenker M, Davison A, Grün S, Diesmann M
Implementing workflow strategies to handle the analysis of complex electrophysiological data sets
Front. Neuroinform. Conference Abstract: 5th INCF Congress of Neuroinformatics, Munich, Germany
abstract
Denker et al. 2012cDenker, M., Zehl, L., Brochier, T., Grün, S., Riehle, A.
Spatial organization of synchronized activity expressed by joint spiking and local field potentials in motor cortex
8th FENS Forum of European Neuroscience 2012, Barcelona, Spain
abstract
Denker et al. 2014aZehl, L., Kilavik, B., Diesmann, M., Brochier, T., Riehle, A. and Grün, S. Characterizing spatially organized LFP beta oscillations in the macaque motor cortexAREADNE 2014, Santorini, Greece, 06/25/2014 - 06/29/2014
Denker et al. 2015Denker, M., Yegenoglu, A., Holstein, D., Torre, E., Jennings, T., Davison, A. and Grün, S.elephant: An open-source tool for the analysis of electrophysiological dataProceedings of the 11th Meeting of the German Neuroscience Society, Neuroforum (2015) T27-2B
Denkeret al 2013Denker, M. ; Riehle, A. ; Diesmann, M. ; Grün, S.Relating excess spike synchrony to LFP-locked firing rate modulations.
Annual CNS Meeting 2013, Paris, France, 07/13/2013 - 07/18/2013
Djurfeldt 2011Djurfeldt, M.The Connection-set Algebra: a formalism for the representation of connectivity structure in neuronal network models, implementations in Python and C++, and their use in simulatorsBMC Neuroscience 2011, 12(Suppl 1):P80
doi:10.1186/1471-2202-12-S1-P80
abstract
Einevoll et al. 2014Einevoll, G.T., Łeski, S. and Hagen, E.Tutorial: Modeling and interpretation of extracellular potentials (T4)CNS 2014, Québec City (Canada), http://www.cnsorg.org/cns-2014-tutorials#T4 abstract
Eppler et al. 2011Eppler, J.M., Kunkel, S., Plesser, H.E., Gewaltig, M.-O., Morrison, A. and Diesmann, M.NEST: An efficient simulator for spiking neural network modelsPoster at the Ninth Göttingen Meeting of the German Neuroscience Society 2011: T27-9B abstract
Eppler et al. 2011bEppler, J.M., Enger, H., Heiberg, T., Kriener, B., Plesser, H.E., Diesmann, M. and Djurfeldt, M.Evaluating the Connection-Set Algebra for the neural simulator NESTPoster at the 4th INCF Congress of Neuroinformatics, Boston, USA
doi:10.3389/conf.fninf.2011.08.00085
abstract
Eppler et al. 2012Eppler, J. M., Djurfeldt, M., Muller, E., Diesmann, M. and Davison, A.Combining simulator independent network descriptions with run-time interoperability based on PyNN and MUSICIn Conference Abstract: 5th INCF Congress of Neuroinformatics, Front. Neuroinform. (2012)
EpplerM et al 2013Eppler, J. M. ; Kunkel, S. ; Helias, M. ; Zaytsev, Y. ; Plesser, H. E. ; Gewaltig, M.-O. ; Morrison, A. ; Diesmann, M.
20 years of NEST: a mature brain simulator
INM Retreat 2013, Jülich, Germany, 07/02/2013 - 07/03/2013
EpplerM et al. 2012Eppler, J. M. ; Wiebelt, B. ; Zaytsev, Y. ; Diesmann, M.
The NEST software development infrastructure
INM Retreat 2012, Jülich, Germany, 07/03/2012 - 07/04/2012
Faraji et al. 2015wrong entry, please deletewrong entry, please deletewrong entry, please delete
Galluppi et al. 2012Galluppi, F., Davies, S., Rast, A., Sharp, T., Plana, L. A. and Furber, S. A hierachical configuration system for a massively parallel neural hardware platformCF '12 Proceedings of the 9th conference on Computing Frontiers, Cagliari (2012): 183-192
doi:10.1145/2212908.2212934
abstract, fulltext
Gorchetchnikov et al. 2011Gorchetchnikov, A., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., Djurfeldt, M., Gleeson, P., Hill, S., Hines, M., Kriener, B., Le Franc, Y., Lo, C.-C., Morrison, A., Muller, E., Plesser, H.E., Raikov, I., Ray, S., Schwabe, L. and Szatmary, B.NineML: declarative, mathematically-explicit descriptions of spiking neuronal networksFront. Neuroinform. Conference Abstract: 4th INCF Congress of Neuroinformatics
doi:10.3389/conf.fninf.2011.08.00098
abstract
Grün 2012aGrün, S. Data Driven Analysis of Spatio-Temporal Cortical InteractionGDR 2904 Multi-Electrodes - 3rd Annual Meeting Marseille ; Marseille ; France ; 10/25/2012 - 10/26/2012
Grün et al. 2012Grün, S., Picado-Muino, D., Berger, D., Gerstein, G., Borgelt, C.
Detection of Neuronal Assemblies by Frequent Item Set Mining
Neuroinformatics 2012, Munich, Germany
abstract
Grytskyy et al. 2012cGrytskyy, D., Helias, M., Tetzlaff, T., Diesmann, M.
Taming the model zoo: a unified view on correlations in recurrent networks
Twenty First Annual Computational Neuroscience Meeting, Decatur, GA, USA; BMC Neuroscience 2012, 13(Suppl 1):P147.
doi:10.1186/1471-2202-13-S1-P147
abstract
Grytskyy et al. 2012dGrytskyy, D., Helias, M., Tetzlaff, T., Diesmann, M.Ornstein-Uhlenbeck-process joins and extends different theories of correlationsBernstein Conference 2012, Munich, Germany; Front Comp Neurosci 6 (2012)

doi:10.3389/conf.fncom.2012.55.00101
abstract
Grytskyy et al. 2012eGrytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M. Invariance of covariances arises out of noise AIP Conf. Proc. (2013) 1510: 258
doi:10.1063/1.4776531
abstract
Grytskyy et al. 2014bGrytskyy, D., Diesmann, M. and Helias, M. Activity propagation in plastic feed-forward networks of nonlinear neuronsMachine Learning Summer School 2014, MLSS, Reykjavik, Iceland, 04/24/2014 - 05/04/2014
Grytskyyet al 2013bGrytskyy, D. ; Diesmann, M. ; Helias, M.
Connectivity reconstruction from complete or partially known covariances in the asynchronous irregular regime
Bernstein Conference 2013, BCCN 2013, Tuebingen, Germany, 09/25/2013 - 09/27/2013
Grytskyyet al 2013dGrytskyy, D. ; Diesmann, M. ; Helias, M.
Reconstruction of network connectivity in the irregular firing regime
10th Goettingen Meeting of the German Neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/16/2013
Grytskyyet al. 2014Grytskyy, D. ; Diesmann, M. ; Helias, M. Activity propagation in plastic feed-forward networks of nonlinear neuronsBernstein Conference 2014, BCCN 2014, Goettingen, Germany, 09/03/2014 - 09/05/2014
Habenschuss et al. 2012Habenschuss, S., Bill, J. and Nessler, B. Homeostatic plasticity in Bayesian spiking networks as Expectation Maximization with posterior constraintsin Advances in Neural Information Processing Systems 25 (2012): 782-790 abstract, fulltext
Hageet al 2013Hagen, E. ; Stavrinou, M. ; Lindén, H. ; Dahmen, D. ; Tetzlaff, T. ; van Albada, S. ; Grün, S. ; Diesmann, M. ; Einevoll, G. T.
Hybrid scheme for modeling LFPs from spiking cortical network models
Proceedings of NeuroInformatics 2013
NeuroInformatics 2013, Stockholm, Sweden, 08/27/2013 - 08/29/2013
Hagen et al. 2013Espen Hagen, Maria L Stavrinou, Henrik Linden, Tom Tetzlaff, Sacha J van Albada,
David Dahmen, Markus Diesmann, Sonja Gruen, Gaute T Einevoll
Hybrid scheme for modeling LFPs from spiking cortical network modelsCNS*2013 in Paris, France, 14.-16.7.2013.BMC Neurosci. 2013; 14(Suppl 1): P119.
doi:10.1186/1471-2202-14-S1-P119
fulltext
Hagen et al. 2013bEspen Hagen, Maria Stavrinou, Henrik Linden, David Dahmen, Tom Tetzlaff, Sasha Van Albada, Sonja Gruen, Markus Diesmann, and Gaute EinevollHybrid scheme for modeling LFPs from spiking cortical network models6th INCF Congress of Neuroinformatics, Stockholm, Sweden, 27.-29.08.2013.
Hagen et al. 2015Hagen, E., Dahmen, D., Stavrinou, M.L., Linden, H., Tetzlaff, T., van Albada, S., Diesmann, M., Grün, S. and Einevoll, G.T. Hybrid scheme for modeling local field potentials from point-neuron networks11th Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, 03/18/2015 - 03/21/2015
Heiberg and Plesser 2013Thomas Heiberg and Hans E PlesserA pythonic workflow for automated large-scale parameter scans.Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2013, page 190, Stockholm, 2013. abstract
Heiberg et al 2013aT. Heiberg, B. Kriener, T. Tetzlaff, G. T. Einevoll, and H. E. PlesserFiring-rate models for neurons with a broad repertoire of spiking behaviors.BMC Neuroscience (2013) 14(Suppl 1):P317
doi:10.1186/1471-2202-14-S1-P317
abstract
Helias 2014Helias, M.Identifying anatomical circuits causing population rate oscillations in structured integrate-and-fire networksBernstein Conference, Goettingen, Germany, 09/03/2014 - 09/05/2014
Helias et al. 2011bHelias, M., Tetzlaff, T. and Diesmann, M.Towards a unified theory of correlations in recurrent neural networksBMC Neuroscience 2011, 12(Suppl 1):P73
doi:10.1186/1471-2202-12-S1-P73
fulltext
Helias et al. 2011cHelias, M., Grytskyy, D., Tetzlaff, T. and Diesmann, M.Model-invariant features of correlations in recurrent networksFront. Comput. Neurosci. (2011) Conference Abstract: BC11 : Computational Neuroscience & Neurotechnology Bernstein Conference & Neurex Annual Meeting 2011
doi:10.3389/conf.fncom.2011.53.00219
abstract
Helias et al. 2012aHelias, M., Kunkel, S., Eppler, J., Masumoto, G., Igarashi, J., Ishii, S., Fukai, T., Morrison, A. and Diesmann, M.Spiking neuronal network simulation technology for contemporary supercomputersINCF Meeting, 10-12 Sept 2012, Munich, Germany
Heliaset al 2013Helias, M. ; Tetzlaff, T. ; Diesmann, M.
Intrinsic and extrinsic sources of correlated activity in recurrent networks
10th Goettingen meeting of the German neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/16/2013
Heliaset al 2013bHelias, M. ; Tetzlaff, T. ; Diesmann, M.Recurrence and external sources differentially shape network correlations.
Computational Neuroscience Conference 2013, CNS*2013, Paris, France, 07/13/2013 - 07/18/2013
Hjertholm et al 2013Daniel Hjertholm, Birgit Kriener and Hans E Plesser Python test suite for statistical properties of probabilistic networks with and without spatial structureFrontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2013, page P79, Stockholm, 2013 abstract
Hugues et al. 2013Hugues, E., Brito, Stein Naves de Brito, C., Gerstner, W., Romo, R. and Deco, G. A model of perceptual discrimination under sequential sensory evidenceComputational Neuroscience Meeting, Paris, 2013, BMC Neuroscience 14(Suppl. 1):P102.
doi:10.1186/1471-2202-14-S1-P102
abstract
Itoet al 2013Ito, J. ; Mukai, M. ; Tamura, H. ; Grün, S.
Effects of Complex Background on the Object Selective Response of Current Source in the Inferior Temporal Cortex of Macaque Monkeys
Bernstein Conference 2013, Tübingen, Germany, 09/25/2013 - 09/27/2013
Itoet al 2013bIto, J. ; Mukai, M. ; Yamane, Y. ; Tamura, H. ; Grün, S.
Effects of complex background scene on object selectivity of current source density activities in the macaque inferior temporal cortex
36th European Conference on Visual Perception, ECVP2013, Bremen, Germany, 08/25/2013 - 08/29/2013
Jordanet al 2013Jordan, J. ; Tetzlaff, T. ; Breitwieser, O. ; Petrovici, M. ; Schemmel, J. ; Diesmann, M. ; Meier, K.
Generation of uncorrelated noise by recurrent neural networks
3rd BrainScaleS Plenary meeting, Marseille, France, 03/21/2013 - 03/22/2013
Jordanet al 2013bJordan, J. ; Tetzlaff, T. ; Breitwieser, O. ; Petrovici, M. ; Schemmel, J. ; Diesmann, M. ; Meier, K.
Generation of uncorrelated noise by recurrent neural networks
10th Goettingen Meeting of the German Neuroscience Society, Goettingen, Germany, 03/13/2013 - 03/16/2013
Jordanet al 2015Jordan, J. ; Pfeil, T. ; Tetzlaff, T. ; Grübl, A. ; Schemmel, J. ; Diesmann, M. ; Meier, K. The effect of heterogeneity on decorrelation mechanisms in spiking neural networks: a neuromorphic-hardware study11th Göttingen Meeting of the German Neuroscience Society, Göttingen, Germany, 03/18/2015 - 03/21/2015
Jordanet al. 2014bJordan, J., Petrovici, M., Pfeil, T., Breitwieser, O., Bytschok, I., Bill, J., Gruebl, A., Schemmel, J., Meier, K., Diesmann, M. and Tetzlaff, T. Neural Networks as Sources of uncorrelated Noise for functional neural SystemsOCCAM 2014, Osnabrueck, Germany, 05/07/2014 - 05/09/2014
Kisvarday and Uddin 2013Kisvarday, Z. and Uddin, T. An approach to increase the yield of physiologically characterized and intracellularly labeled neurons in cortical areas exposed for intrinsic signal optical imaging in the primary visual cortex of the catPoster Presented at the XIV Annual Conference of the Hungarian Neuroscience Society, Budapest, HU (2013) abstract
Kriener et al 2013B. Kriener, H. Enger, T. Tetzlaff, H. E. Plesser, M.-O. Gewaltig, and G. T. Einevoll.Dynamics and lifetime of persistent activity states in random networks of spiking neurons with strong synapses.BMC Neuroscience (2013) 14(Suppl 1):P121 abstract
Krieneret al 2013Kriener, B. ; Helias, M. ; Rotter, S. ; Diesmann, M. ; Einevoll, G. T.
How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime
Computational Neuroscience Conference, CNS*2013, Paris, France, 07/13/2013 - 07/18/2013
Kunkel et al 2013S. Kunkel, M. Schmidt, J. M. Eppler, H. E. Plesser, J. Igarashi, G. Masumoto, T. Fukai, S. Ishii, A. Morrison, M. Diesmann, and M. Helias.From laptops to supercomputers: a single highly scalable code base for spiking neuronal network simulations.BMC Neuroscience (2013) 14(Suppl 1):P163
doi:10.1186/1471-2202-14-S1-P163
abstract
Kunkelet al 2013bKunkel, S. ; Schmidt, M. ; Eppler, J. M. ; Igarashi, J. ; Masumoto, G. ; Fukai, T. ; Ishii, S. ; Plesser, H. E. ; Morrison, A. ; Diesmann, M. ; Helias, M.
Supercomputers ready for use as discovery machines for neuroscience
10th Meeting of the German Neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/18/2013
Lansner 2011Lansner APerceptual and memory functions in a cortexinspired attractor network modelBMC Neuroscience (2011), 12(Suppl 1):K2 abstract
Lindén et al. 2011bLindén, H., Tetzlaff, T., Potjans, T.C., Pettersen, K.H., Grün, S., Diesmann, M. and Einevoll, G.T.How local is the local field potential?BMC Neuroscience 2011, 12(Suppl 1):O8
doi:10.1186/1471-2202-12-S1-O
fulltext
Linden et al. 2014aLindén, H. and Tetzlaff, T. Conditions for fluctuation-driven attractor states and the role of inhibition10th Bernstein Conference 2014, Goettingen, Goettingen, Germany, 09/02/2014 - 09/05/2014
doi:10.12751/nncn.bc2014.0274
fulltext
Lodi et al. 2013Lodi, M., Somogyi, P. and Kisvarday, Z. Synaptic targets of GABAergic fusiform cells in the cat primary visual cortexXVIII. Hungarian Vision Symposium, Pécs (2013)
Maksimovet al 2012Maksimov, A. ; van Albada, S. J. ; Diesmann, M.
Understanding global whisker motion detection through large-scale simulation of the rodent whisker system
Okinawa Computational Neuroscience Course 2012
Okinawa, Japan, 2012-06-11"
Martinez-Garcia et al. 2011aMartinez-Garcia, M., Rolls, E., Deco, G. and Romo, R.Computational mechanisms of postponed decisionsPoster at the CNS Congress, Stockholm, Sweden, July 2011
Martinez-Garcia et al. 2011bMartinez-Garcia, M., Insabato, A., Pardo-Vazquez, J.L., Acuña, C. and Deco, G.Neural correlates of confidence in decision-makingPoster at the ICON Congress, Palma de Mallorca, Spain, September 2011
Maximovet al 2013Maximov, A. ; van Albada, S. ; Diesmann, M.
Toward a biologically realistic spiking model of a rodent barrel column
Bernstein Conference 2013, Tuebingen, Germany, 09/25/2013 - 09/27/2013
Meso et al. 2013Meso, A., Rankin, J., Kornprobst, P. and Masson, G.S.Multi-stability in motion perception combines multiple underlying neural mechanismsCoSyne meeting. 1-4 March 2013, Salt-Lake City, USA.
Meyes and Ito 2014bMeyes, R. and Ito, J. Effects of Complex Background Sceneson Object Selectivity of Single Unit Activities in the Macaque IT cortex5th Active Vsion Workshop, Juelich, Germany, 06/11/2014 - 06/13/2014
Millner et al. 2012Millner, S., Hartel, A., Schemmel, J. and Meier, K.Towards biologically realistic multi-compartment neuron model emulation in analog VLSIESANN 2012 proceedings, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges (Belgium), 25-27 April 2012 fulltext
Montagnini et al. 2012Montagnini, A., Bogadhi, A. R. and Masson, G. S. (2012) Dynamical integration of retinal and extra-retinal signals for smooth pursuit eye movements : a two stage bayesian modelPerception, ECVP Abstracts September 2012
Morrison et al. 2011Morrison, A., Denker, M., Wiebelt, B., Fliegner, D. and Diesmann, M.New possibilities for advanced analysis methods in neuroscience through modern approaches to trivial parallel data processingPoster at the Ninth Göttingen Meeting of the German Neuroscience Society 2011: T27-11B abstract
Mukaiet al 2013Mukai, M. ; Yamane, Y. ; Ito, J. ; Grün, S. ; Tamura, H.
Effects of complex background scene on object selectivity ofsingle-unit activities in the macaque inferior temporal cortex
36th European Conference on Visual Perception, ECVP2013, Bremen, Germany, 08/25/2013 - 08/29/2013
Ness et al. 2012Ness, T.B., Hagen, E., Negwer, M., Bakker, R., Schubert, D. and Einevoll, G.T. Modeling extracellular spikes and local field potentials recorded in MEAs Proceedings of the 8th international meeting on Multielectrode Arrays, Reutlingen (2012)
Nowke et al. 2012bNowke, C., Hentschel, B., Kuhlen, T., Eppler, J.M., van Albada, S., Bakker, R., Diesmann, M., Schmidt, M.VisNEST - Interactive analysis of neural activity dataIEEE VisWeek 2012 abstract
Nowke et al. 2013bNowke, C., Schmidt, M., van Albada, S., Eppler, J., Bakker, R., Diesmann, M., Hentschel, B. and Kuhlen, T. Interactive visualization of brain-scale spiking activityAnnual CNS Meeting 2013, BMC Neuroscience 2013, 14(Suppl 1):P110
Nowkeet al 2013Nowke, C. ; Hentschel, B. ; Kuhlen, T. ; Schmidt, M. ; van Albada, S. ; Eppler, J. M. ; Bakker, R. ; Diesmann, M.
Interactive visualization of brain-scale spiking activity
Twenty Second Annual Computational Neuroscience Meeting, CNS 2013, Paris, France, 07/13/2013 - 07/18/2013
Partzsch et al. 2012Partzsch, J. and Mayr, C. and Schiefer, S. and Hartmann, S. and Scholze, S. and Schüffny, R.Highly Integrated Packet-Based Communication in a Neuromorphic Wafer SystemUniversity Booth at DATE (Design, Automation and Test in Europe) 2012
Partzsch et al. 2013Partzsch, J., Mayr, C., Vogginger, B., Schueffny, R., Rast, A., Plana, L., Furber, S.Live Demonstration: Ethernet Communication Linking Two Large-Scale Neuromorphic SystemsEuropean Conference on Circuit Theory and Design (2013)
doi:10.1109/ECCTD.2013.6662196
Peyrache et al. 2011bPeyrache, A., Dehghani, N., Eskandar, E., Madsen, J., Anderson, W., Donoghue, J., Halgren, E., Cash, S.S. and Destexhe, A.Spatio-temporal dynamics of neocortical excitation and inhibition during human sleep.Soc Neurosci Abstracts 36: 451.06
Pfeil el al. 2013Pfeil, T., Scherzer, A.-C., Schemmel, J. and Meier, K.Neuromorphic learning towards nano second precisionNeural Networks (IJCNN), The 2013 International Joint Conference on (2013): 1-5
doi:10.1109/IJCNN.2013.6706828
abstract, fulltext
Pfeilet al 2014Pfeil, T., Jordan, J., Tetzlaff, T., Grübl, A., Schemmel, J., Diesmann, M. and Meier, K. Decorrelation of neural-network activity on heterogeneous neuromorphic hardware10th Bernstein Conference 2014, Goettingen, Goettingen, Germany, 09/02/2014 - 09/05/2014
doi:10.12751/nncn.bc2014.0221
abstract
Plesser et al 2013H. E. Plesser, J. M. Eppler, and M.-O. Gewaltig.20 years of NEST: A mature brain simulator. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2013, page 227, Stockholm, 2013 abstract
Plesser et al. 2011Plesser, H.E., Crook, S. and Davison, A.P.Reproducible models and reliable simulations: Current trends in computational neuroscienceSIAM Computational Science and Engineering 2011, Reno, Nevada, February 2011
Potjans and Diesmann 2011bPotjans, T.C. and Diesmann, M.Robustness vs. flexibility: how do external inputs shape the activity in a data-based layered cortical network model?BMC Neuroscience (2011) 12(Suppl 1):74
doi:10.1186/1471-2202-12-S1-P74
fulltext
Potjans et al. 2011Potjans, T.C., Kunkel, S., Morrison, A., Plesser, H.E. and Diesmann, M.Beyond local cortical network modeling: linking microscopic and macroscopic connectivity in brainscale simulationsPoster at the Ninth Göttingen Meeting of the German Neuroscience Society 2011: T26-6A abstract
Raikov et al. 2011Raikov, I., Cannon, R., Clewley, R., Cornelis, H., Davison, A., De Schutter, E., Djurfeldt, M., Gleeson, P., Gorchetchnikov, A., Plesser, H.E., Hill, S., Hines, M., Kriener, B., Le Franc, Y., Lo, C.-C., Morrison, A., Muller, E., Ray, S., Schwabe, L. and Szatmary, B. NineML: the network interchange for neuroscience modeling languageBMC Neuroscience 2011, 12(Suppl 1):P330
doi:10.1186/1471-2202-12-S1-P330
abstract
Rast et al. 2013aRast, A., Partzsch, J., Mayr, C., Schemmel, J., Hartmann, S., Plana, L., Temple, S., Lester, D., Schüffny, R. and Furber, S. A location-independent direct link neuromorphic interfaceNeural Networks, International Joint Conference on, 2013, Dallas, TX, USA
schiefer11Schiefer, S., Hartmann, S., Scholze, S., Partzsch, J., Mayr, C., Henker, S. and Schüffny, R.Live Demonstration: Packet-Based AER with 3 GEvent/s Cumulative ThroughputIEEE International Symposium on Circuits and Systems ISCAS 2011, p. 1988
Schmidt et al. 2013Schmidt, M., van Albada, S., Bakker, R. and Diesmann, M. Toward a spiking multi-area network model of macaque visual cortexProceedings of the 10th Meeting of the German Neuroscience Society, Neuroforum 2013 : T24-10D (2013)
Schmidt et al. 2013bSchmidt, M., van Albada, S., Bakker, R. and Diesmann, M. Integrating multi-scale data for a network model of macaque visual cortexAnnual CNS Meeting 2013, BMC Neuroscience 2013, 14(Suppl 1):P111 (2013)
Schmidt et al. 2014cSchmidt, M., van Albada, S., Bakker, R. and Diesmann, M. A spiking multi-area network model of macaque visual cortexAnnual meeting of the SfN, SfN2014, Washington, DC, USA, 11/15/2014 - 11/19/2014
Schmidt et al. 2014dSchmidt, M., van Albada, S., Bakker, R. and Diesmann, M. Connectomics of a multi-area network model of macaque visual cortexMicro-, meso- and macro-connectomics of the brain, Paris, Frankreich, 05/05/2014 - 05/05/2014
Schmidtet al 2013bSchmidt, M. ; van Albada, S. ; Bakker, R. ; Diesmann, M.
Toward a spiking Multi-area network model of macaque visual cortex
10th Meeting of the German Neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/16/2013
Schmucker et al. 2011Schmuker, M., Brüderle, D., Schrader, S. and Nawrot, M.Ten thousand times faster: Classifying multidimensional data on a spiking neuromorphic hardware system. Poster presented at BC11 - Bernstein Conference 2011 Computational Neuroscience / Neurotechnology and Neurex Annual Meeting, 04 October 2011
doi:10.1038/npre.2011.6547.1
Schuecker et al. 2014aSchücker, J., Diesmann, M. and Helias, M. The transfer function of the LIF model: from white to filtered noiseComputation Neuroscience Conference 2014, CNS14, Quebec, Canada, 07/23/2014 - 07/31/2014
Schultze-Kraft et al. 2011Schultze-Kraft, M., Diesmann, M., Grün, S. and Helias, M.Correlation transmission of spiking neurons is boosted by synchronous inputBMC Neuroscience 2011, 12(Suppl 1):P144
doi:10.1186/1471-2202-12-S1-P144
fulltext
Setareh et al. 2014Setareh, Hesam; Deger, Moritz; Gerstner, WulframThe role of interconnected hub neurons in cortical dynamicsCNS 2014, Quebec City, Canada, July 26-31, 2014 fulltext
Setareh et al. 2015Setareh Hesam, Deger Moritz, Gerstner WulframSynaptic efficacy tunes speed of activity propagation through chains of bistable neural assembliesCOSYNE 2015, Salt Lake City, March 5-10, 2015 fulltext
Stavrinou et al. 2015Stavrinou, M.L., Hagen, E., Dahmen, D., Linden, H., Tetzlaff, T., van Albada, S., Diesmann, M., Grün, S. and Einevoll, G.T. Computing local field potentials based on spiking cortical networksNeuro Informatics 2014, Leiden, Netherlands, 08/25/2014 - 08/27/2014
Strokovet al 2013Strokov, S. ; Ito, J. ; Tamura, H. ; Grün, S.
Spatio-temporal modulations of object selectivity in the inferior temporal cortex
Bernstein Conference 2013, Tübingen, Germany, 09/25/2013 - 09/27/2013
Suzukiet al 2013Suzuki, M. ; Yamane, Y. ; Ito, J. ; Strokov, S. ; Fujita, I. ; Maldonado, P. ; Grün, S. ; Tamura, H.
Factors affecting human gaze behavior: an analysis with complex natural scenes with superimposed object images
36th European Conference on Visual Perception, ECVP2013, Bremen, Germany, 08/25/2013 - 08/29/2013
Tauste et al. 2013Tauste, A., Martinez-Garcia, M. and Romo, R. Estimation of directed information between simultaneous spike trains in decision makingWorkshop "New approaches to spike train analysis and neuronal coding", Computational Neuroscience Meeting, Paris, 2013.
Teeters et al. 2013Teeters, J.L., Benda, J., Davison, A.P., Eglen, S., Gerhard, S., Gerkin, R.C., Grewe, J., Harris, K., Jackson, T., Moucek, R., Pröpper, R., Sessions, H.L., Smith, L.S., Sobolev, A., Sommer, F.T., Stoewer, A. and Wachtler, T. Considerations for developing a standard for storing electrophysiology data in HDF5Neuroinformatics 2013, Stockholm, Sweden, 27 Aug - 29 Aug, (2013)
doi:10.3389/conf.fninf.2013.09.00069
abstract
Tetzlaff et al. 2014Tetzlaff, T., Jordan, J., Petrovici, M., Breitwieser, O., Bytschok, I., Bill, J., Schemmel, J., Meier, K. and Diesmann, M. Neural networks as sources of uncorrelated noise for functional neural architectures10th Bernstein Conference 2014, Goettingen, Goettingen, Germany, 09/02/2014 - 09/05/2014
doi:10.12751/nncn.bc2014.0133
abstract
Tetzlaff et al. 2014bTetzlaff, T., Dahmen, D., Hagen, E., Stavrinou, M.L., Lindén, H., van Albada, S., Diesmann, M., Grün, S. and Einevoll, G.T. Computing local-field potentials based on a point-neuron network model of cat V1NeuroVisionen 10 meeting, Jülich, Germany, 09/26/2014 - 09/26/2014
Tetzlaff et al. 2015Tetzlaff, T., Hagen, E., Dahmen, D., Stavrinou, M.L., Linden, H., van Albada, S., Grün, S., Diesmann, M. and Einevoll, G.T.
Hybrid scheme for modeling local field potentials from point-neuron networks2nd International Symposium of the Clinical Research Group 219, Cologne, Germany, 02/26/2015 - 02/28/2015
Thanasoulis 2012aThanasoulis, V., Partzsch, J., Hartmann, S., Mayr, C. and Schüffny, R. Dedicated FPGA Communication Architecture and Design for a Large-Scale Neuromorphic System9th IEEE International Conference on Electronics, Circuits, and Systems 2012
Thanasoulis 2012bThanasoulis, V., Partzsch, J., Hartmann, S., Mayr, C. and Schüffny, R. Long-Term Pulse Stimulation and Recording in an Accelerated Neuromorphic System9th IEEE International Conference on Electronics, Circuits, and Systems 2012
thanasoulis11Thanasoulis, V. and Hartmann, S. and Ehrlich, M. and Partzsch, J. and Mayr, C. and Schüffny, R.Long-Term Pulse Stimulation and Recording in an Accelerated Neuromorphic SystemDresdner Arbeitstagung Schaltungs und Systementwurf (DASS 2011), p. 72-77
Torre et al. 2013aTorre, E.Spike Pattern Detection by Frequent Itemset MiningTenth Göttigen Meeting of the German Neuroscience Society. Göttingen, Germany: T26-21D (2013)
Torre et al. 2015Torre, E., Canova, C., Gerstein, G., Helias, M., Denker, M. and Grün, SStatistical assessment of sequences of synchronous spiking in massively parallel spike trainsProceedings Cosyne (2015) I-86
Uddin et al. 2013Uddin, T., Monier, C., Fregnac, Y. and Kisvarday, Z. Input-output constellation of neurons at pinwheel-centers in cat primary visual cortexPoster Presented at the XIV Annual Conference of the Hungarian Neuroscience Society, Budapest, HU (2013) abstract
van Albada et al. 2013van Albada, S.J., Schrader, S., Helias, M. and Diesmann, M.Influence of different types of downscaling on a cortical microcircuit modelBMC Neuroscience 2013, 14(Suppl 1):P112
doi:10.1186/1471-2202-14-S1-P112
abstract
van Albada et al. 2014kvan Albada, S, Helias, M. and Diesmann, M. One-to-one relationship between effective connectivity and correlations in asynchronous networksBernstein Conference, Göttingen, Germany, 09/03/2014 - 09/05/2014
Van Albadaet al 2013van Albada, S. ; Maximov, A. ; Schmidt, M. ; Bakker, R. ; Schrader, S. ; Lester, D. ; Diesmann, M.
Cortical multi-layer models for down-scaled implementation on neuromorphic hardware and full-scale implementation on supercomputers
3rd BrainScaleS plenary meeting, Marseille, France, 03/21/2013 - 03/22/2013
Varga and Kisvarday 2013Varga, R. and Kisvarday, Z. Distribution of 'feed-back' synapses int the cat's primary visual cortexXVIII. Hungarian Vision Symposium, Pécs (2013)
Wagatsuma et al. 2011bWagatsuma, N., Potjans, T.C., Diesmann, M. and Fukai, T.Layer dependent neural modulation of a realistic layered-microcircuit model in visual cortex based on bottom-up and top-down signalsBMC Neuroscience 2011, 12(Suppl 1):P114
doi:10.1186/1471-2202-12-S1-P114
fulltext
Wirtssohn et al. 2011Wirtssohn, S., Brochier, T., Denker, M., Grün, S. and Riehle, A.Mapping the spatial structure of LFP activity in motor cortexPoster at the Ninth Göttingen Meeting of the German Neuroscience Society 2011: T21-8B abstract
Zehl et al. 2012Zehl, L., Brochier, T., Riehle, A., Grün, S., Denker, M.
Spatial organization of beta-band local field potential oscillations during delayed reach to grasp movements
3rd Workshop of the GDR 2904 'Multielectrode systems', Marseille, France (2012)
Zehl et al. 2013Zehl, L. ; Brochier, T. ; Riehle, A. ; Grün, S. ; Denker, M.
Spatio-temporal organization of local field potential oscillations in the monkey motor cortex
10th Göttingen Meeting of the German Neuroscience Society, NWG2013, Göttingen, Germany, 03/13/2013 - 03/16/2013
Zehl et al. 2014bZehl, L., Denker, M., Stoewer, A., Jaillet, F., Brochier, T., Riehle, A., Wachtler, T. and Grün, S. Metadata management for complex neurophysiological experimentsAREADNE 2014, Santorini, Greece, 06/25/2014 - 06/29/2014
Zehl et al. 2014cZehl, L., Denker, M., Adrian, S., Florent, J., Thomas, B., Alexa, R., Thomas, W. and Grün, S. Handling complex metadata of neurophysiological experimentsINCF Neuroinformatics 2014, Leiden, Netherlands, 08/25/2014 - 08/27/2014
doi:10.3389/conf.fninf.2014.18.00029
abstract
Zehl et al. 2015Zehl, L., Denker, M., Stoewer, A., Jaillet, F., Brochier, T., Riehle, A., Wachtler, T. and Grün, S.How to efficiently organize and exploit metadata metadata of complex electrophysiological experimentsProceedings of the 11th Meeting of the German Neuroscience Society, Neuroforum (2015) T27-1C
Zenke et al. 2015bZenke F., Agnes E., Gerstner W.Hebbian and non-Hebbian plasticity orchestrated to form and retrieve memories in spiking networksCOSYNE 2015, Salt Lake City fulltext

Web publication (reviewed)

Destexhe and Bedard 2013Destexhe, A. and Bedard, C.Local field potentialAlain Destexhe and Claude Bedard (2013), Scholarpedia, 8(8):10713
doi:10.4249/scholarpedia.10713
fulltext

PhD Thesis

Arduin 2011Arduin, P.-J.Operant conditionning of neurons in the rat motor cortex for a graded control of a prosthetic devicePh. D. thesis (2011)
Baladron Pezoa 2013Baladron Pezoa, J.Exploring the neural codes using parallel hardwarePhD Thesis, Universite Nice Sophia Antipolis (2013) abstract, fulltext
Benjaminsson 2013Benjaminsson, SimonOn large-scale neural simulations and applications in neuroinformaticsPhD thesis, KTH Royal Institute of Technology (2013), Trita-CSC-A, ISSN 1653-5723; 2013:06
Boubenec 2012Boubenec, Y.Tactile information collection in the rat: biomecanics of the vibrissa and exploration strategyPhD thesis (2012)
Brigham 2015Brigham, M.Non-Stationary Stochastic Dynamics of Neuronal MembranesPhD thesis (2015)
Estebanez 2011Estebanez, L.Cracterization of sensory processings in the barrel cortex of the anesthetized ratPh. D. thesis (2011)
Fasoli 2013Fasoli, D.Traiter le cerveau avec les neurosciences : théorie de champ-moyen, effets de taille finie et capacité de codage des réseaux de neurones stochastiquesPhD Thesis, Universite Nice Sophia Antipolis (2013) abstract, fulltext
Faye 2012bFaye, G.Symmetry breaking and pattern formation in some neural field
equations
PhD Thesis, Universite Nice Sophia Antipolis, June 2012 abstract, fulltext, BibTeX
Galtier 2011Mathieu GaltierA mathematical approach to unsupervised learning in recurrent neural networksPhD thesis fulltext, BibTeX
Gerhard 2014Gerhard, FelipeStatistical models of effective connectivity in neural microcircuitsEPFL PhD Thesis fulltext
Habenschuss 2013Stefan Habenschuss Theoretical Analysis of Stochastic Computations and Learning in Networks of Spiking Neurons PhD Thesis, Graz University of Technology (2013) abstract
Hahn 2013Hahn, G.Neuronal activity propagation in the brain: from neuronal avalanches to synfire chains and gamma oscillationsEcole Doctorale of Polytechnique (EDX) and University Paris VI (ED3C) (scientific adviser Y. Frégnac) (2013)
Hennequin 2013Hennequin GuillaumeStability and amplification in plastic cortical circuitsEPFL PhD Thesis fulltext
Hermann 2012Geoffroy HermannSome mean fi eld equations in neurosciencePhD thesis fulltext, BibTeX
Hock 2014Hock, M.Modern Semiconductor Technologies for Neuromorphic HardwarePhD thesis (2014) at the University of Heidelberg fulltext
Jeltsch 2014Jeltsch, S.A Scalable Workflow for a Configurable Neuromorphic PlatformPhD thesis (2014) at the University of Heidelberg fulltext
Jonke 2013Jonke, Z.Stochastic Computations and Learning in Networks of Spiking Neurons: Simulation framework, Analysis and Theory PhD Thesis, Graz University of Technology (2013) abstract
Lundqvist 2013Lundqvist, MikaelOscillations and spike statistics in biophysical attractor networksPhD thesis, KTH Royal Institute of Technology (2013), ISBN 978-91-7447-756-6
Müller 2014Müller, E.Novel Operation Modes of Accelerated Neuromorphic HardwarePhD Thesis (2014) at the University of Heidelberg fulltext
Mensi 2014Mensi SkanderA new Mathematical Framework to Understand Single Neuron ComputationsEPFL PhD Thesis fulltext
Millner 2012Sebastian MillnerDevelopment of a Multi-Compartment Neuron Model Emulation Dissertation(2012) abstract, fulltext, BibTeX
Naud 2011Naud RichardThe Dynamics of Adapting NeuronsEPFL PhD Thesis fulltext
Partzsch 2014Partzsch, J.Analyse- und Entwurfsmethoden für Verbindungsarchitekturen neuromorpher SystemePhD thesis (2014) at Technische Universität Dresden
Veltz 2011bRomain VeltzNonlinear analysis methods in neural field modelsPhD, Univ Paris Est ED MSTIC abstract, BibTeX
Yousaf 2013Muhammad YousafTwo population neural field modelsPhD thesis, Norwegian University of Life Sciences (2013)
Zenke 2014Zenke FriedemannMemory formation and recall in recurrent spiking neural networksEPFL PhD Thesis fulltext

Master/Diploma Thesis

Bytschok 2011Bytschok, I.From Shared Input to correlated Neuron Dynamics: Development of a Predictive FrameworkDiploma thesis (2011) abstract, fulltext
Canova 2014Canova, C.Statistical Assessment and Neuronal Composition of Active Synfire ChainsDiploma Thesis, Univ Tübingen abstract
Franovic 2013Franovic, TinCortex Inspired Network Architectures For Spatio-Temporal Information ProcessingMaster thesis, KTH Royal Institute of Technology (2013), URI:urn:nbn:se:kth:diva-129758
Grabuschnig 2014S. GrabuschnigThe role of inhibitory networks in the self-organization of cortical microcircuits.Master Thesis 2014 Graz University of Technology abstract, fulltext
Griesbacher 2013Griesbacher, GernotStructure and Self Organization in Spiking Neural Networks Master Thesis, Graz University of Technology (2013)
Hjertholm 2013Daniel HjertholmStatistical tests for connection algorithms for structured neural networksMaster Thesis (2013) Norwegian University of Life Sciences fulltext
Hofer 2014F. HoferComputational Properties of L5 Pyramidal CellsMaster Thesis 2014 Graz University of Technology abstract
Hubner 2013Hubner, FlorianDevelopment of an interface for fast read out of high-resolution two-photon imagesMaster Thesis, Graz University of Technology (2013)
Jordan 2013Jordan, JakobDeterministic recurrent networks as a source of uncorrelated noise for functional neural systems Master thesis (2013) Fakultat fur Physik, Ludwig-Maximilians-Universitat Munchen
Kononov 2011Kononov, A.Testing of an Analog Neuromorphic Network ChipDiploma thesis (2011) abstract, fulltext
Krishnan 2014Jeyashree KrishnanDetection of threshold crossings in the leaky integrate-and-fire neuron model with alpha-shaped postsynaptic currents in time-driven simulationsKrishnan 2014 Master Thesis Juelich INM-6
Kuruvilla 2011Kuruvilla, R. Entwicklung und Aufbau einer anwenderfreundlichen Hardwareumgebung für ein neuromorphes Chipsystem (in German)Diploma thesis (2011) abstract, fulltext
Lengl 2014Leng, L.Deep Learning Architectures for Neuromorphic HardwareMater thesis at University of Heidelberg (2014) abstract
Schmidt 2014Schmidt, D.Automated Characterization of a Wafer-Scale Neuromorphic Hardware SystemMaster thesis at University of Heidelberg (2014) fulltext
Torralba 2013Torralba, JonathanNetwork implementation for a sequential decision making taskMaster Thesis, Pompeu Fabra University (2013)
Zerlaut 2011Zerlaut, Y.Transfer Functions of Neurons and Macroscopic Modelling of Network StatesMaster Thesis (2011)

Bachelor Thesis

Beuttenmüller 2014Beuttenmüller, F.Interfacing a Neuronal Accelerator to a High Performance Computing SystemBachelor thesis at University of Heidelberg abstract, fulltext
Billaudelle 2014Billaudelle, S.Characterisation and Calibration of Short Term Plasticity on a Neuromorphic Hardware ChipBachelor thesis at University of Heidelberg (2014) abstract, fulltext
Denne 2014Denne, M.Testen der Software und Vermessen des Multi-Compartment Chips Bachelor thesis at University of Heidelberg (2014) abstract, fulltext
Friedrich 2015Friedrich, A.Charakterisierung von Adaption auf neuromorpher HardwareBachelor thesis at University of Heidelberg (2015) abstract, fulltext
Hüll 2014Hüll, S.Testen eines Floating-Gate Analogspeichers in 65nm Single-Poly TechnologieBachelor thesis at University of Heidelberg (2014) abstract, fulltext
Hellenbrand 2013Hellenbrand, M.A Raspberry Pi controlling neuromorphic hardwareBachelor thesis at University of Heidelberg (2013) abstract, fulltext
Hinrichs 2014Hinrichs, D.Software Development in the Context of Dendrite Membrane SimulationBachelor thesis at University of Heidelberg (2014) abstract, fulltext
Hornschild 2014Hornschild, A.Neural computation with stochastic synapsesBachelor thesis (2013) at RWTH Aachen University and Forschungszentrum Juelich GmbH
Ilmberger 2014Ilmberger, J.Development of a multichannel voltage generation unit with sub-microvolt precisionBachelor thesis at University of Heidelberg (2014) abstract
Kiene 2014Kiene, G.Evaluating the Synaptic Input of a Neuromorphic CircuitBachelor thesis at University of Heidelberg (2014) abstract, fulltext
Kriener 2014Kriener, L.Binaural Sound Localization on Neuromorphic HardwareBachelor thesis at University of Heidelberg (2014) abstract, fulltext
Probst 2011Probst, D.Analysis of the Liquid Computing Paradigm on a Neuromorphic Hardware SystemDiploma thesis (2011) abstract, fulltext
Stöckel 2015Stöckel, D.Boltzmann Sampling with Neuromorphic HardwareBachelor thesis at University of Heidelberg (2015) abstract

Web publication

Benjaminsson et al. 2011Benjaminsson, S., Silverstein, D., Herman, P., Melis, P., Slavnic, V., Spasojevic, M., Alexiev, K. and Lansner, A.Visualization of output from Large-Scale Brain SimulationsPartnership for Advanced Computing in Europe (PRACE), Project ID: PRPC06 fulltext
Faugeras and MacLaurin 2013Faugeras, O. and MacLaurin, J.A large deviation principle for networks of rate neurons with correlated synaptic weightsTechnical Report, INRIA, also on arXiv: http://arxiv.org/abs/1302.1029 fulltext, BibTeX
Nowke et al. 2013cNowke, C., Schmidt, M., van Albada, S., Eppler, J., Bakker, R., Diesmann, M., Hentschel, B. and Kuhlen, T. VisNEST - Interactive analysis of neural activity dataVideo posted on vimeo: http://vimeo.com/82512745 fulltext
Potjans and Diesmann 2011Potjans, T.C. and Diesmann, M.The cell-type specific connectivity of the local cortical network explains prominent features of neuronal activityarXiv:1106.5678v1 [q-bio.NC] 28 Jun 2011 abstract
Schuecker et al. 2014Schuecker, J., Diesmann, M. and Helias, M.Spectral properties of excitable systems subject to colored noisearXiv:1411.0432 abstract, fulltext
van Albada et al. 2014bVan Albada, S., Diesmann, M., Eppler, J.M., Hentschel, B., Kuhlen, T.. Nowke, C., Reske, M. and Schmidt, M.Modellierung und 3D-Visualisierung neuronaler Netzwerke in der Grössenordnung des GehirnsRWTH Themen (2014) 2: 52-57 fulltext
van Albada et al. 2014evan Albada, S.J., Helias, M. and Diesmann, M.Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlationsarXiv:1411.4770 abstract, fulltext
Veltz and Sejnowski 2014Veltz, R. and Sejnowski, T.J.Periodic forcing of stabilized E-I networks: Nonlinear resonance curves and dynamicsResearch report, INRIA Sophia Antipolis (2014):hal-01096590 fulltext

Other

Schönherr, M.Denkende Hardware? - Neuartige Computerchips ahmen Fähigkeiten des menschlichen Gehirns nachRadio-interview in German language in a feature of Deutschland Radio Kultur, broadcasted 12 April 2012 at 19:30. Interview part starting at minute 5:30, BrainScaleS at minute 8:35 abstract, fulltext
Rehn, E., Benjaminsson, S. and Lansner, A. Event-based Sensor Interface for Supercomputer scale Neural NetworksKTH technical report TRITA-CSC-CB, ISSN 1653-5707; 2012:02 abstract, fulltext
Bachmannet al. 2014Bachmann, C., Tetzlaff, T., Kunkel, S. and Morrison, A. Effect of Alzheimer's disease on the dynamical and computational characteristics of recurrent neural networksINM Retreat 2014, Juelich, Germany, 01/07/2014 - 02/07/2014
Bedard and Destexhe 2013bBedard, C. and Destexhe, A.Letter to the editor: ELECTRIC MONOPOLES ARE INDEED COMPATIBLE WITH MAXWELL EQUATIONSJN Physiol (2013) 109(6): 1683
doi:10.1152/jn.01095.2012
fulltext
Canova 2013bCanova, C.Detecting Activity Propagation in Massively Parallel Spike TrainsInvited talk at Brain Institute (INSCER), Porto Alegre, Brazil. Dec. 17, 2013
Canova et al. 2014Canova, C., Torre, E., Denker, M., Gerstein, G. and Grün, S. Statistical Assessment and Neuronal Composition of Active Synfire ChainsINM Retreat 2014, Jülich, Germany, 07/01/2014 - 07/02/2014
Chorley et al. 2014Chorley, P., Diesmann, M., Helias, M. and Grün, S. Correlated rate vector dynamics in motor cortexINM Retreat, Jülich, Germany, 07/01/2014 - 07/02/2014
Dahmen et al. 2014bDahmen, D., Hagen, E., Stavrinou, M.L., Lindén, H., Tetzlaff, T., van Albada, S., Diesmann, M., Grün, S., Einevoll, G.T.
From spiking point-neuron networks to LFPs: a hybrid approachBrainScaleS 4th plenary meeting, Manchester, United Kingdom, 03/19/2014 - 03/21/2014
Denker et al. 2014cDenker, M., Yegenoglu, A., Davison, A. and Grün, S. Towards a Unifying Tool for the Analysis of Electrophysiological Data Sets based on NeoINM Retreat 2014, Jülich, Germany, 07/01/2014 - 07/02/2014
Denker et al. 2014dDenker, M., Zehl, L., Kilavik, B., Diesmann, M., Brochier, T., Riehle, A. and Grün, S. Characterizing Spatially Organized LFP Beta Oscillations in Motor CortexINM Retreat 2014, Jülich, Germany, 07/01/2014 - 07/02/2014
Fregnac 2013hFregnac, Y.Les enjeux de la modélisation du cerveau: des neurosciences cognitives aux calculateurs inspirés du vivant.Invites conférence Grand Public dans le cadre des Découvrades Toulouse (2013)
Grün 2014Grün, S.Obtaining and analyzing massively parallel spike data in relation to behavior4th BrainScaleS plenary meeting, Manchester, Grossbritannien,
Grün 2014bGrün, S.Talk: Spike Synchrony: From Cross-Correlations to Higher Order Analysis MethodsSPP 1665 Analytical Workshop: Analysis and Management of Electrophysiological Activity Data, Juelich, 24.-27.11.2014
Grün 2014cGrün, S.Accessing the spatio-temporal organization of cortical activity during complex behaviorDepartment of Psychology and Neuroscience, Maastricht Univ, NL (2014)
Grün 2014dGrün, S.Statistical methods for detection of assembly activity in massively parallel spike dataWorkshop at the Carnegie Mellon University,Pittsburgh, USA, 07/24/2014 -
Grün 2014fGrün, S.Talk: Detection of assembly activity in massively parallel spike data: Workflow and statisticsBCCN Heidelberg-Mannheim, Heidelberg, Germany (2014)
Grün 2014hGrün, S.Spatio-temporal organization of cortical processing during complex behaviorCenter for Information and Neural Networks, Osaka University, Japan (2014)
Grün 2014iGrün, S.Accessing the spatio-temporal organization of cortical activity during complex behaviorRIKEN BSI, Wako-Shi, Japan (2014)
Grün 2014jGrün, S.Talk: Accessing the spatio-temporal organization of cortical activity during complex behaviorHertie Institute for Clinical Brain Research, Tübingen, Germany (2014)
Gruen and Diesmann 2012Gruen, S. and Diesmann, M.Hirnforschung braucht ein Netzwerk: Computational and Systems Neuroscience am Forschungszentrum Juelichsystembiologie.de (2012) 4: 36-39 fulltext
Helias 2014bHelias, M. The origin of population rate oscillations in spiking neural networksINM Retreat, Juelich, Germany, 07/01/2014 - 07/02/2014
Jordan et al. 2014cJordan, J., Petrovici, M., Pfeil, T.Neural networks as sources of uncorrelated noise for functional neural systemsHBP Workshop on Stochastic Neural Computation, Paris, France, 11/27/2014 - 11/28/2014
Jordan et al. 2014dJordan, J., Petrovici, M., Pfeil, T., Breitwieser, O., Bytschok, I., Bill, J., Gruebl, A., Schemmel, J., Meier, K., Diesmann, M. and Tetzlaff, T. Neural networks as sources of uncorrelated noise for functional neural systems4th BrainScaleS Plenary meeting, Manchester, England, 03/20/2014 - 03/21/2014
Jordan et al. 2014eJordan, J., Petrovici, M., Pfeil, T., Bytschok, I., Bill, J., Gruebel, A., Meier, K., Diesmann, M. and Tetzlaff, T. Neural networks as sources of uncorrelated noise for functional neural systems4th BrainScaleS Plenary meeting, Manchester, England, 03/20/2014 - 03/21/2014
Jordanet al. 2014Petrovici, M., Pfeil, T., Breitwieser, O., Bytschok, I., Bill, J., Gruebl, A., Schemmel, J., Meier, K., Diesmann, M. and Tetzlaff, T. Neural Networks as Sources of uncorrelated Noise for functional neural SystemsINM Retreat 2014, Juelich, Germany, 07/01/2014 - 07/02/2014
Kunkel et al. 2012Kunkel, S., Helias, M., Potjans, T. C., Eppler, J. M., Plesser, H.E., Diesmann, M. and Morrison, A.Memory Consumption of Neuronal Network Simulators at the Brain Scalein Binder K, Münster G, Kremer M (Eds) NIC Symposium 2012 Proceedings NIC Series Vol. 45, page 81, Jülich, Germany, ISBN 978-3-89336-758-0 fulltext
Kunkelet al. 2014bPlesser, H.E., Helias, M., Diesmann, M. and Morrison, A. The NEST 4g kernel: highly scalable simulation code from laptops to supercomputersBrainScaleS CodeJam Workshop 6, Juelich, Germany, 01/27/2014 - 01/29/2014 BibTeX
Maximov et al. 2014Maximov, A., van Albada, S. and Diesmann, M. Calibration of a simulated cortical microcircuit using slice data.INM Retreat 2014, Juelich, germany, 07/01/2014 - 07/02/2014
Meier 2012Meier, K. Neurone & Co. - Imitieren mit SiliziumSpektrum der Wissenschaft September (2012): 92-99 abstract
Plesser and Enger 2013Hans E Plesser and Haakon EngerNEST Topology User Manual Version 2.2NEST Topology User Manual (2013) fulltext
Schücker et al. 2014Schücker, J., Schmidt, M., van Albada, S., Diesmann, M. and Helias, M. Stability analysis of a multi-area network model of macaque visual cortexINM Retreat 2013, Juelich, Germany, 07/01/2014 - 07/02/2014
Schmidt et al. 2014bSchmidt, M., Schücker, J., van Albada, S., Bakker, R., Helias, M. and Diesmann, M. Multi-area network model of visual cortex4th BrainScales plenary meeting, Manchester, Grossbritannien, 03/19/2014 - 03/21/2014
Stavrinou 2014Stavrinou, M.L.Local field potentials and network dynamics in a model cortical column of cat V1Kongsberg Vision Meeting, Kongsberg (Norway) (2014)
Tetzlaff et al. 2014cTetzlaff, T., Dahmen, D., Hagen, E., Stavrinou, M. L., Lindén, H., van Albada, S., Diesmann, M., Grün, S. and Einevoll, G.T.M.Poster: Computing local-field potentials based on a point-neuron network model of cat V1INM retreat, Jülich, Germany, 07/01/2014 - 07/02/2014
van Albada 2014van Albada, S. Microcircuit model of early sensory cortex - Porting to the Hybrid Multiscale Facility (HMF)4th BrainScaleS Plenary Meeting, Manchester, UK, 03/20/2014 - 03/21/2014
van Albada 2014bVan Albada, S.Multi-Area Model of Macaque Visual Cortex & Scaling Asynchronous Networks with Attention to CovariancesThe University of Sydney, Australia, 09/23/2014
van Albada and Diesmann 2014van Albada, S. and Diesmann, M. NEST HPC status - technology and theoryBrainScaleS Demo 1, 2 and 3 workshop, Gif-sur-Yvette, France, 11/25/2014 - 11/26/2014
van Albada and Rowley 2014van Albada, S. and Rowley, A. BrainScaleS Demo 1.1 - Microcircuit model of early sensory cortex. Status updateBrainScaleS Demo 1, 2 and 3 workshop, Gif-sur-Yvette, France, 11/25/2014 - 11/26/2014
van Albada et al. 2014lvan Albada, S., Schmidt, M., Bakker, R. and Diesmann, M. Spiking multi-area model of macaque visual cortexINM Retreat 2014, Jülich, Germany, 07/01/2014 - 07/02/2014
Zehl et al. 2014Denker, M., Stoewer, A., Jaillet, F., Brochier, T., Riehle, A., Wachtler, T. and Grün, S. Organizing Metadata of Complex Neurophysiological ExperimentsINM Retreat 2014, Juelich, Germany, 07/01/2014 - 07/02/2014

Newspaper article

Analoger Chip "Spikey" simuliert Gehirn (article in German)www.pressetext.com website (2012) fulltext
Neurocomputer: Chip Spikey arbeitet wie ein menschliches Gehirn (article in German)www.new-scientist.de (2012) fulltext
Marshall, M.Brain-like chip outstrips normal computers New Scientist magazine - 24 November 2012 (2012) 2892 fulltext
Walpot, M.Computerwissenschaft: Wenn das Gehirn wuerfeltDiePresse.COM / Die Presse am Sonntag, 19 Nov 2011 (online) and 20 Nov 2011 (print) fulltext
Dambeck, H.Hardware mit HirnTechnology Review (2012) 1: 34-39

Press release

Computer suchen ihre Nachfolger (German language joint press release JUELICH and UHEI)Juelich website, September 2011 fulltext


 
. 
 

26 August 2016