Publications of Helias, M

Select a view.
56 publication entries, 34 of them (printed in bold in the list) acknowledge the project support.
Jump to:
Book chapter
Conference contribution: talk
Conference contribution: poster
Web publication
Other

Paper (reviewed)

Deger et al. 2012Deger, M., Helias, M., Rotter, S. and Diesmann, M. Spike-Timing Dependence of Structural Plasticity Explains Cooperative Synapse Formation in the NeocortexPLoS Comput Biol (2012) 8(9): e1002689
doi:10.1371/journal.pcbi.1002689
Grytskyy et al. 2013Grytskyy, D., Tetzlaff, T., Diesmann, M., and Helias, M.A unified view on weakly correlated recurrent networksFront Comput Neurosci. (2013) 7:131
doi:10.3389/fncom.2013.00131
fulltext
Grytskyy et al. 2013bGrytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M.A unified view on weakly correlated recurrent networksFrontiers in computational neuroscience (2013) 7(131): 1-19
doi:10.3389/fncom.2013.00131
fulltext
Helias et al. 2011Helias, M., Deger, M., Rotter, S. and Diesmann, M.Finite post synaptic potentials cause a fast neuronal responseFront. Neurosci. (2011) 5:19
doi:10.3389/fnins.2011.00019
abstract, fulltext
Helias et al. 2012Helias, M., Kunkel, S., Masumoto, G., Igarashi, J., Eppler, J. M., Ishii, S., Fukai, T., Morrison, A. and Diesmann, M. Supercomputers ready for use as discovery machines for neuroscienceFront. Neuroinform. (2012) 6:26
doi:10.3389/fninf.2012.00026
fulltext
Helias et al. 2013Helias, M., Tetzlaff, T., and Diesmann, M.Echoes in correlated neural systems New J. Phys. (2013) 15: 023002
doi:10.1088/1367-2630/15/2/023002
fulltext
Helias et al. 2014Helias, M., Tetzlaff, T. and Diesmann, M. The Correlation Structure of Local Neuronal Networks Intrinsically Results from Recurrent DynamicsPLoS Computational Biology (2014) 10(1): e1003428
doi:10.1371/journal.pcbi.1003428
fulltext
Kriener et al. 2014bHelias, M., Rotter, S., Diesmann, M. and Einevoll, G. T. How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regimeFrontiers in computational neuroscience (2014) 7: 1
doi:10.3389/fncom.2013.00187
fulltext
Kunkel et al. 2014Kunkel, S., Schmidt, M., Eppler, J.M., Plesser, H.E., Masumoto, G., Igarashi, J., Ishii, S., Fukai, T., Morrison, A., Diesmann, M. and Helias, M. Spiking network simulation code for petascale computersFront. Neuroinform. (2014) 8:78
doi:10.3389/fninf.2014.00078
abstract, fulltext
Schultze-Kraft et al. 2013Schultze-Kraft, M., Diesmann, M., Grün, S. and Helias, M.Noise Suppression and Surplus Synchrony by Coincidence DetectionPLoS Comput Biol. (2013) 9(4):e1002904
doi:10.1371/journal.pcbi.1002904
Tetzlaff et al. 2012Tetzlaff, T., Helias, M., Einevoll, G. T. and Diesmann, M. Decorrelation of Neural-Network Activity by Inhibitory FeedbackPLoS Comput Biol (2012) 8(8): e1002596
doi:10.1371/journal.pcbi.1002596
fulltext
van Albada et al. 2015van Albada, S.J., Helias, M. and Diesmann, M.Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and CorrelationsPLoS Comput Biol (2015) 11(9): e1004490
doi:10.1371/journal.pcbi.1004490

Book chapter

van Albada et al. 2014van Albada, S., Helias, M. and Diesmann, M. Integrating brain structure and dynamics on supercomputers"Springer Cham Heidelberg New York Dordrecht London
ISBN: 978-3-319-12083-6 (print), 978-3-319-12084-3 (electronic)

Lecture Notes in Computer Science 8603, 22-32 (2014) [10.1007/978-3-319-12084-3_3] "

doi:10.1007/978-3-319-12084-3_3
fulltext

Conference contribution: talk

Bos and Helias 2014Bos, H. and Helias, M. The origin of population rate oscillations in spiking neural networksHeraeusSeminar on The Versatile Action of Noise: From Genetic to Neural Circuits, Bremen, Germany, 06/22/2014 - 06/27/2014
Grytskyy et al. 2012Grytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M. Unifying propagators and covariances of network models by Ornstein-Uhlenbeck process12th Granada* Seminar - Physics, Computation and the Mind - Advances and Challenges at Interfaces ; La Herradura ; Spain ; 09/17/2012 - 09/21/2012 abstract
Grytskyy et al. 2012bGrytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M.Unification of covariances in different neuron network models through the mapping onto Ornstein-Uhlenbeck processApplied Mathematics, Control and Informatics, Belgorod, Russia, 10/03/2012 - 10/05/2012
Grytskyyet al 2013cGrytskyy, D. ; Tetzlaff, T. ; Diesmann, M. ; Helias, M. Covariances in neural networks in linear approximation
Donders Discussion 2013, Nijmegen, Netherlands, 10/31/2013 - 11/01/2013
Helias 2013Helias, M.Structure and invariance of correlations in balanced networks
BCCN workshop 'Dynamics of Neuronal Systems', Freiburg, Germany, 06/18/2013 - 06/20/2013
Helias et al. 2014aHelias, M., Kunkel, S., Morrison, A. and Diesmann, M. NEST, simulation technology for brain-scale networks at cellular and synaptic resolutionSOS18 Conference on distributed supercomputing, St. Moritz, Switzerland, 03/17/2014 - 03/20/2014
Kunkel et al. 2014cKunkel, S., Helias, M., Diesmann, M. and Morrison, A. Specifying supercomputers for brain-scale neuronal network simulationsHPC for Life Science, Brussels, Belgium, 05/26/2014 - 05/27/2014
Kunkel et al. 2014dKunkel, S., Helias, M., Diesmann, M. and Morrison, A. Supercomputer simulations of spiking neuronal networksProgress on Brain-Like Computing, Stockholm, Sweden, 02/05/2014 - 02/06/2014
Schmidt et al. 2014Schmidt, M., Schücker, J., van Albada, S., Bakker, R., Helias, M. and Diesmann, M. Multi-area network model of visual cortex4th BrainScaleS plenary meeting, Manchester, Grossbritannien, 19 - 21 March 2014
Tetzlaffet al 2013Tetzlaff, T. ; Helias, M. ; Jordan, J. ; Petrovici, M. ; Breitwieser, O. ; Diesmann, M.
Decorrelation of neural-network activity by inhibitory feedback: Mechanism and applications
22nd Annual Computational Neuroscience Meeting (CNS*2013), workshop on "Functional role of correlations: theory and experiment", CNS13, Paris, France, 07/13/2013 - 07/18/2013
van Albada et al. 2014cvan Albada, S., Helias, M. and Diesmann, M.One-to-one relationship between effective connectivity and correlations in asynchronous networksBernstein Conference, Göttingen, Germany, 09/03/2014 - 09/05/2014

Conference contribution: poster

Bakkeret al 2012Bakker, R. ; Denker, M. ; Diesmann, M. ; Eppler, J. M. ; Grün, S. ; Grytskyy, D. ; Helias, M. ; Ito, J. ; Maximov, A. ; Schmidt, M. ; Tetzlaff, T. ; Torre, E. ; van Albada, S. ; Wiebelt, B. ; Zehl, L.
Planned activities in Jülich
BrainScales Conference, Jülich, Germany, 03/19/2012
Bos et al. 2014Bos, H., Schmidt, M., Jordan, J., Schücker, J., van Albada, S., Bakker, R., Diesmann, M., Helias, M. and Tetzlaff, T.Cortical multi-layered, multi-area networks as a substrate for stochastic computingHBP Workshop on Stochastic Neural Computation, Paris, France, 11/27/2014 - 11/28/2014
Canova et al. 2015Canova, C;, Torre, E, Denker, M, Helias, M, Gerstein, G and Grün, S.Statistical assessment and neuronal composition of active synfire chainsPoster presentation at German Neuroscience Society Meeting (NWG 2015). Göttingen, Germany. Mar. 21, 2015
EpplerM et al 2013Eppler, J. M. ; Kunkel, S. ; Helias, M. ; Zaytsev, Y. ; Plesser, H. E. ; Gewaltig, M.-O. ; Morrison, A. ; Diesmann, M.
20 years of NEST: a mature brain simulator
INM Retreat 2013, Jülich, Germany, 07/02/2013 - 07/03/2013
Grytskyy et al. 2012cGrytskyy, D., Helias, M., Tetzlaff, T., Diesmann, M.
Taming the model zoo: a unified view on correlations in recurrent networks
Twenty First Annual Computational Neuroscience Meeting, Decatur, GA, USA; BMC Neuroscience 2012, 13(Suppl 1):P147.
doi:10.1186/1471-2202-13-S1-P147
abstract
Grytskyy et al. 2012dGrytskyy, D., Helias, M., Tetzlaff, T., Diesmann, M.Ornstein-Uhlenbeck-process joins and extends different theories of correlationsBernstein Conference 2012, Munich, Germany; Front Comp Neurosci 6 (2012)

doi:10.3389/conf.fncom.2012.55.00101
abstract
Grytskyy et al. 2012eGrytskyy, D., Tetzlaff, T., Diesmann, M. and Helias, M. Invariance of covariances arises out of noise AIP Conf. Proc. (2013) 1510: 258
doi:10.1063/1.4776531
abstract
Grytskyy et al. 2014bGrytskyy, D., Diesmann, M. and Helias, M. Activity propagation in plastic feed-forward networks of nonlinear neuronsMachine Learning Summer School 2014, MLSS, Reykjavik, Iceland, 04/24/2014 - 05/04/2014
Grytskyyet al 2013bGrytskyy, D. ; Diesmann, M. ; Helias, M.
Connectivity reconstruction from complete or partially known covariances in the asynchronous irregular regime
Bernstein Conference 2013, BCCN 2013, Tuebingen, Germany, 09/25/2013 - 09/27/2013
Grytskyyet al 2013dGrytskyy, D. ; Diesmann, M. ; Helias, M.
Reconstruction of network connectivity in the irregular firing regime
10th Goettingen Meeting of the German Neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/16/2013
Grytskyyet al. 2014Grytskyy, D. ; Diesmann, M. ; Helias, M. Activity propagation in plastic feed-forward networks of nonlinear neuronsBernstein Conference 2014, BCCN 2014, Goettingen, Germany, 09/03/2014 - 09/05/2014
Helias 2014Helias, M.Identifying anatomical circuits causing population rate oscillations in structured integrate-and-fire networksBernstein Conference, Goettingen, Germany, 09/03/2014 - 09/05/2014
Helias et al. 2011bHelias, M., Tetzlaff, T. and Diesmann, M.Towards a unified theory of correlations in recurrent neural networksBMC Neuroscience 2011, 12(Suppl 1):P73
doi:10.1186/1471-2202-12-S1-P73
fulltext
Helias et al. 2011cHelias, M., Grytskyy, D., Tetzlaff, T. and Diesmann, M.Model-invariant features of correlations in recurrent networksFront. Comput. Neurosci. (2011) Conference Abstract: BC11 : Computational Neuroscience & Neurotechnology Bernstein Conference & Neurex Annual Meeting 2011
doi:10.3389/conf.fncom.2011.53.00219
abstract
Helias et al. 2012aHelias, M., Kunkel, S., Eppler, J., Masumoto, G., Igarashi, J., Ishii, S., Fukai, T., Morrison, A. and Diesmann, M.Spiking neuronal network simulation technology for contemporary supercomputersINCF Meeting, 10-12 Sept 2012, Munich, Germany
Heliaset al 2013Helias, M. ; Tetzlaff, T. ; Diesmann, M.
Intrinsic and extrinsic sources of correlated activity in recurrent networks
10th Goettingen meeting of the German neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/16/2013
Heliaset al 2013bHelias, M. ; Tetzlaff, T. ; Diesmann, M.Recurrence and external sources differentially shape network correlations.
Computational Neuroscience Conference 2013, CNS*2013, Paris, France, 07/13/2013 - 07/18/2013
Krieneret al 2013Kriener, B. ; Helias, M. ; Rotter, S. ; Diesmann, M. ; Einevoll, G. T.
How pattern formation in ring networks of excitatory and inhibitory spiking neurons depends on the input current regime
Computational Neuroscience Conference, CNS*2013, Paris, France, 07/13/2013 - 07/18/2013
Kunkelet al 2013bKunkel, S. ; Schmidt, M. ; Eppler, J. M. ; Igarashi, J. ; Masumoto, G. ; Fukai, T. ; Ishii, S. ; Plesser, H. E. ; Morrison, A. ; Diesmann, M. ; Helias, M.
Supercomputers ready for use as discovery machines for neuroscience
10th Meeting of the German Neuroscience Society, NWG 2013, Goettingen, Germany, 03/13/2013 - 03/18/2013
Schuecker et al. 2014aSchücker, J., Diesmann, M. and Helias, M. The transfer function of the LIF model: from white to filtered noiseComputation Neuroscience Conference 2014, CNS14, Quebec, Canada, 07/23/2014 - 07/31/2014
Schultze-Kraft et al. 2011Schultze-Kraft, M., Diesmann, M., Grün, S. and Helias, M.Correlation transmission of spiking neurons is boosted by synchronous inputBMC Neuroscience 2011, 12(Suppl 1):P144
doi:10.1186/1471-2202-12-S1-P144
fulltext
Torre et al. 2015Torre, E., Canova, C., Gerstein, G., Helias, M., Denker, M. and Grün, SStatistical assessment of sequences of synchronous spiking in massively parallel spike trainsProceedings Cosyne (2015) I-86
van Albada et al. 2013van Albada, S.J., Schrader, S., Helias, M. and Diesmann, M.Influence of different types of downscaling on a cortical microcircuit modelBMC Neuroscience 2013, 14(Suppl 1):P112
doi:10.1186/1471-2202-14-S1-P112
abstract
van Albada et al. 2014kvan Albada, S, Helias, M. and Diesmann, M. One-to-one relationship between effective connectivity and correlations in asynchronous networksBernstein Conference, Göttingen, Germany, 09/03/2014 - 09/05/2014

Web publication

Schuecker et al. 2014Schuecker, J., Diesmann, M. and Helias, M.Spectral properties of excitable systems subject to colored noisearXiv:1411.0432 abstract, fulltext
van Albada et al. 2014evan Albada, S.J., Helias, M. and Diesmann, M.Scalability of asynchronous networks is limited by one-to-one mapping between effective connectivity and correlationsarXiv:1411.4770 abstract, fulltext

Other

Chorley et al. 2014Chorley, P., Diesmann, M., Helias, M. and Grün, S. Correlated rate vector dynamics in motor cortexINM Retreat, Jülich, Germany, 07/01/2014 - 07/02/2014
Helias 2014bHelias, M. The origin of population rate oscillations in spiking neural networksINM Retreat, Juelich, Germany, 07/01/2014 - 07/02/2014
Kunkel et al. 2012Kunkel, S., Helias, M., Potjans, T. C., Eppler, J. M., Plesser, H.E., Diesmann, M. and Morrison, A.Memory Consumption of Neuronal Network Simulators at the Brain Scalein Binder K, Münster G, Kremer M (Eds) NIC Symposium 2012 Proceedings NIC Series Vol. 45, page 81, Jülich, Germany, ISBN 978-3-89336-758-0 fulltext
Kunkelet al. 2014bPlesser, H.E., Helias, M., Diesmann, M. and Morrison, A. The NEST 4g kernel: highly scalable simulation code from laptops to supercomputersBrainScaleS CodeJam Workshop 6, Juelich, Germany, 01/27/2014 - 01/29/2014 BibTeX
Schücker et al. 2014Schücker, J., Schmidt, M., van Albada, S., Diesmann, M. and Helias, M. Stability analysis of a multi-area network model of macaque visual cortexINM Retreat 2013, Juelich, Germany, 07/01/2014 - 07/02/2014
Schmidt et al. 2014bSchmidt, M., Schücker, J., van Albada, S., Bakker, R., Helias, M. and Diesmann, M. Multi-area network model of visual cortex4th BrainScales plenary meeting, Manchester, Grossbritannien, 03/19/2014 - 03/21/2014


 
. 
 

26 August 2016