Publications of Faugeras, O.

Select a view.
18 publication entries, 12 of them (printed in bold in the list) acknowledge the project support.
Jump to:
Web publication

Paper (reviewed)

Faugeras, O. and MacLaurin, J.
Asymptotic Description of Neural Networks with Correlated Synaptic WeightsEntropy (2015) 17(7): 4701-4743
doi:10.3390/e17074701
fulltext
Baladron et al. 2012Baladron, J., Fasoli, D. and Faugeras, O.Three applications of gpu computing in neuroscienceComputing in Science and Engineering (2012) 14(3):40-47
doi:10.1109/MCSE.2011.119
fulltext
Baladron et al. 2012bBaladron, J., Fasoli, D.,Faugeras, O. and Touboul, J.Mean-field description and propagation of chaos in networks of Hodgkin-Huxley neuronsJournal of Mathematical Neuroscience (2012) 2:10
doi:10.1186/2190-8567-2-10
fulltext, BibTeX
Chossat et al. 2011Chossat, P., Faye, G., Faugeras, O.Bifurcations of hyperbolic planforms Journal of Nonlinear Science (2011) 21(4): 465-498
doi:10.1007/s00332-010-9089-3
abstract, fulltext, BibTeX
Faugeras and Inglis 2015Faugeras, O. and Inglis, J. Stochastic neural field equations: a rigorous footingJournal of Mathematical Biology (2015) 71(2): 259-300
doi:10.1007/s00285-014-0807-6
fulltext
Faugeras and Maclaurin 2014aFaugeras, O. and Maclaurin, J. Asymptotic description of stochastic neural networks. I. Existence of a large deviation principleComptes Rendus Mathematique (2014) 352(10): 841-846
doi:10.1016/j.crma.2014.08.018
fulltext
Faugeras and Maclaurin 2014bFaugeras, O. and Maclaurin J.Asymptotic description of stochastic neural networks. II. Characterization of the limit lawComptes Rendus Mathematique (2014) 352(10): 847-852
doi:10.1016/j.crma.2014.08.017
abstract
Faugeras and MacLaurin 2014cFaugeras, O. and MacLaurin, J.A Large Deviation Principle and an Expression of the Rate Function for a Discrete Stationary Gaussian ProcessEntropy (2014) 16(12): 6722-6738
doi:10.3390/e16126722
fulltext
Faugeras and Maclaurin 2014dFaugeras, O. and MacLaurin, J.A Representation of the Relative Entropy with Respect to a Diffusion Process in Terms of Its Infinitesimal GeneratorEntropy (2014) 16(12): 6705-6721
doi:10.3390/e16126705
fulltext
Faye et al. 2011Faye, G., Chossat, P. and Faugeras, O.Analysis of a hyperbolic geometric model for visual texture perceptionThe Journal of Mathematical Neuroscience (2011) 1:4
doi:10.1186/2190-8567-1-4
fulltext, BibTeX
Galtier et al. 2012Galtier, M., Faugeras, O. and Bressloff, P. Hebbian Learning of Recurrent Connections: A Geometrical PerspectiveNeural Computation (2012) 24(9): 2346-2383
doi:10.1162/NECO_a_00322
(fulltext)
Rankin et al. 2012Rankin, J., Tlapale, E., Veltz, R., Faugeras, O. and Kornprobst, P. Bifurcation analysis applied to a model of motion integration with a multistable stimulusJournal of Computational Neuroscience (2013) 34(1): 103-124
doi:10.1007/s10827-012-0409-5
fulltext, BibTeX
Rankin et al. 2013aRankin, J., Tlapale, E., Veltz, R., Faugeras, O. and Kornprobst, P. Bifurcation analysis applied to a model of motion integration with a multistable stimulus Journal of Computational Neuroscience (2013) 34(1): 103-124
doi:10.1007/s10827-012-0409-5
fulltext
Rankin et al. 2013bRankin, J., Meso, A. I., Masson, G.S., Faugeras, O. and Kornprobst, P. Bifurcation study of a neural field competition model with an application to perceptual switching in motion integrationJournal of Computational Neuroscience (2013) September: 1-21
doi:10.1007/s10827-013-0465-5
fulltext
Touboul el al. 2011Touboul, J., Hermann, G. and Faugeras, O.Noise-Induced Behaviors in Neural Mean Field DynamicsSIAM J. Applied Dynamical Systems (2012) 11(1): 49-81
doi:10.1137/110832392
abstract, fulltext, BibTeX
Veltz and Faugeras 2013Veltz, R. and Faugeras, O.A Center Manifold Result for Delayed Neural Fields EquationsSIAM J. Math. Anal. (2013) 45(3): 1527-1562
doi:10.1137/110856162
abstract, fulltext
Veltz and Faugeras 2011Veltz, R. and Faugeras, O.Stability of the stationary solutions of neural field equations with propagation delaysThe Journal of Mathematical Neuroscience (2011) 1:1
doi:10.1186/2190-8567-1-1
abstract, fulltext, BibTeX

Web publication

Faugeras and MacLaurin 2013Faugeras, O. and MacLaurin, J.A large deviation principle for networks of rate neurons with correlated synaptic weightsTechnical Report, INRIA, also on arXiv: http://arxiv.org/abs/1302.1029 fulltext, BibTeX


 
. 
 

26 August 2016