Faugeras, O. and MacLaurin, J. | Asymptotic Description of Neural Networks with Correlated Synaptic Weights | Entropy (2015) 17(7): 4701-4743 doi:10.3390/e17074701 |
fulltext | |
Baladron et al. 2012 | Baladron, J., Fasoli, D. and Faugeras, O. | Three applications of gpu computing in neuroscience | Computing in Science and Engineering (2012) 14(3):40-47 doi:10.1109/MCSE.2011.119 |
fulltext |
Baladron et al. 2012b | Baladron, J., Fasoli, D.,Faugeras, O. and Touboul, J. | Mean-field description and propagation of chaos in networks of Hodgkin-Huxley neurons | Journal of Mathematical Neuroscience (2012) 2:10 doi:10.1186/2190-8567-2-10 |
fulltext, BibTeX |
Chossat et al. 2011 | Chossat, P., Faye, G., Faugeras, O. | Bifurcations of hyperbolic planforms | Journal of Nonlinear Science (2011) 21(4): 465-498 doi:10.1007/s00332-010-9089-3 |
abstract, fulltext, BibTeX |
Faugeras and Inglis 2015 | Faugeras, O. and Inglis, J. | Stochastic neural field equations: a rigorous footing | Journal of Mathematical Biology (2015) 71(2): 259-300 doi:10.1007/s00285-014-0807-6 |
fulltext |
Faugeras and Maclaurin 2014a | Faugeras, O. and Maclaurin, J. | Asymptotic description of stochastic neural networks. I. Existence of a large deviation principle | Comptes Rendus Mathematique (2014) 352(10): 841-846 doi:10.1016/j.crma.2014.08.018 |
fulltext |
Faugeras and Maclaurin 2014b | Faugeras, O. and Maclaurin J. | Asymptotic description of stochastic neural networks. II. Characterization of the limit law | Comptes Rendus Mathematique (2014) 352(10): 847-852 doi:10.1016/j.crma.2014.08.017 |
abstract |
Faugeras and MacLaurin 2014c | Faugeras, O. and MacLaurin, J. | A Large Deviation Principle and an Expression of the Rate Function for a Discrete Stationary Gaussian Process | Entropy (2014) 16(12): 6722-6738 doi:10.3390/e16126722 |
fulltext |
Faugeras and Maclaurin 2014d | Faugeras, O. and MacLaurin, J. | A Representation of the Relative Entropy with Respect to a Diffusion Process in Terms of Its Infinitesimal Generator | Entropy (2014) 16(12): 6705-6721 doi:10.3390/e16126705 |
fulltext |
Faye et al. 2011 | Faye, G., Chossat, P. and Faugeras, O. | Analysis of a hyperbolic geometric model for visual texture perception | The Journal of Mathematical Neuroscience (2011) 1:4 doi:10.1186/2190-8567-1-4 |
fulltext, BibTeX |
Galtier et al. 2012 | Galtier, M., Faugeras, O. and Bressloff, P. | Hebbian Learning of Recurrent Connections: A Geometrical Perspective | Neural Computation (2012) 24(9): 2346-2383 doi:10.1162/NECO_a_00322 |
(fulltext) |
Rankin et al. 2012 | Rankin, J., Tlapale, E., Veltz, R., Faugeras, O. and Kornprobst, P. | Bifurcation analysis applied to a model of motion integration with a multistable stimulus | Journal of Computational Neuroscience (2013) 34(1): 103-124 doi:10.1007/s10827-012-0409-5 |
fulltext, BibTeX |
Rankin et al. 2013a | Rankin, J., Tlapale, E., Veltz, R., Faugeras, O. and Kornprobst, P. | Bifurcation analysis applied to a model of motion integration with a multistable stimulus | Journal of Computational Neuroscience (2013) 34(1): 103-124 doi:10.1007/s10827-012-0409-5 |
fulltext |
Rankin et al. 2013b | Rankin, J., Meso, A. I., Masson, G.S., Faugeras, O. and Kornprobst, P. | Bifurcation study of a neural field competition model with an application to perceptual switching in motion integration | Journal of Computational Neuroscience (2013) September: 1-21 doi:10.1007/s10827-013-0465-5 |
fulltext |
Touboul el al. 2011 | Touboul, J., Hermann, G. and Faugeras, O. | Noise-Induced Behaviors in Neural Mean Field Dynamics | SIAM J. Applied Dynamical Systems (2012) 11(1): 49-81 doi:10.1137/110832392 |
abstract, fulltext, BibTeX |
Veltz and Faugeras 2013 | Veltz, R. and Faugeras, O. | A Center Manifold Result for Delayed Neural Fields Equations | SIAM J. Math. Anal. (2013) 45(3): 1527-1562 doi:10.1137/110856162 |
abstract, fulltext |
Veltz and Faugeras 2011 | Veltz, R. and Faugeras, O. | Stability of the stationary solutions of neural field equations with propagation delays | The Journal of Mathematical Neuroscience (2011) 1:1 doi:10.1186/2190-8567-1-1 |
abstract, fulltext, BibTeX |
Faugeras and MacLaurin 2013 | Faugeras, O. and MacLaurin, J. | A large deviation principle for networks of rate neurons with correlated synaptic weights | Technical Report, INRIA, also on arXiv: http://arxiv.org/abs/1302.1029 | fulltext, BibTeX |