

JARA BRAIN Jülich Aachen Research Alliance

Spiking network simulation code for the peta scale

www.csn.fz-juelich.de www.nest-initiative.org

Markus Diesmann Institute of Neuroscience and Medicine (INM-6) Institute for Advanced Simulation (IAS-6) Jülich Research Centre

Oct 2nd 2014, BrainScaleS, Heidelberg

Overview

models of large-scale networks

cortical microcircuit

need for brain-scale models

designing simulation software for the brain scale

3rd generation simulation kernel

[scale of 10,000 compute nodes]

4th generation simulation kernel, platform in initial phase of HBP [scale of 100,000 compute nodes]

Interactions between neurons

- current injection into pre-synaptic neuron causes excursions of membrane potential
- supra-threshold value causes spike transmitted to post-synaptic neuron
- post-synaptic neuron responds with small
 excursion of potential after delay
- inhibitory neurons (20%) cause negative excursion

- each neuron receives input from 10,000 other neurons
- causing large fluctuations of membrane potential
- emission rate of 1 to 10 spikes per second

Precision

- NEST supports spike interaction without discretization of time
- feature accessible via PyNN
- unrelated to whether algorithm is globally event-driven

Morrison A, Straube S, Plesser H E, Diesmann M (2007) Exact subthreshold integration with continuous spike times in discrete time neural network simulations Neural Computation 19: 47-79 Hanuschkin A, Kunkel S, Helias M, Morrison A and Diesmann M (2010) A general and efficient method

for incorporating precise spike times in globally time-driven simulations Front. Neuroinform. 4:113

 feature regularly used for high-precision simulations

Mitglied der Helmholtz-Gemeinschaft

Minimal layered cortical network model

1 mm³

1 billion synapses, 100,000 neurons

- 2 populations of neurons per layer:
 - E: Excitatory
 - I: Inhibitory
- E and I identical neuronal dynamics
- Iaterally homogeneous connectivity
- layer- and type-specific C_{ij}^{xy}

Convergence and divergence

- dominated by within-layer connections
- e → e divergence reflects
 "standard" loop
- e → i divergence reflects target-specific feedback

Local cortical microcircuit

taking into account layer and neuron-type specific connectivity is sufficient to reproduce experimentally observed:

- asynchronous-irregular spiking of neurons
- higher spike rate of inhibitory neurons
- correct distribution of spike rates across layers
- integrates knowledge of more than
 50 experimental papers

Potjans TC & Diesmann M (2014) The cell-type specific connectivity of the local cortical network explains prominent features of neuronal activity. *Cerebral Cortex* 24 (3): 785-806

available at: www.opensourcebrain.org

Building block for functional studies

frontier	S Journals -	Events 👻 Jobs 👻	People 👻 Videos	- News - Blogs -
About Submit Registe	r Login			Search
	Ontier	JROSCIEN		\sim
Info	ORIGINAL RESEARCH ARTICLE			Article Info
Home	Share 0 Like 0 Comment 0 🛉 in 🗩 👯 39 🤇	Share Altmetric 0	530 Views	Abstract
About	Front. Comput. Neurosci., 08 July 2011 doi: 10.3389/fncom	.2011.00031		Full Text
Editorial Board	Laver-dependent attentional processing			PDF
Archive	by top-down signals in	Export Citation		
Research Topics	microcircuit model	XML		
View Some Authors	microcircuit model			View Article Impact
Review Guidelines	Nobuhiko Wagatsuma ^{1,2} *, Tobias C. Potjans ^{3,4,5} , Markus Diesmann ^{1,3,4} and Tomoki Fukai ^{1,4,6} ¹ RIKEN Brain Science Institute, Wako, Japan	The Authors in		
Subscribe to Alerts				Frontiers
Search		Google		
Q	 ³ Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience, 		Google Scholar	
Article Type	Research Center Juelich, Juelich, Germany			PubMed
All	Japan	Related Article		
Publication Date	 Faculty of Biology III, Albert-Ludwigs-University Free Core Research of Evolutional Science and Technology 	Iburg, Freiburg, Germany øv. Janan Science and Technoloøv		in Frontiers

Building block for mesoscopic studies

collaboration with Gaute Einevoll (UMB, Norway)

Oct 2nd 2014, BrainScaleS, Heidelberg

Critique of local network model

a network of networks with at least three levels of organization:

- neurons in local microcircuit models are missing 50% of synapses
- e.g., power spectrum shows discrepancies, slow oscillations missing
- solution by taking brain-scale anatomy into account

Meso- and macro-scale measures

brain-scale networks basis for:

- further measures by forward modeling
- comparison with mean-field models

mesoscopic measures

- local field potential (LFP)
- voltage sensitive dyes (VSD)

and macroscopic measuresEEG, MEG

fMRI resting state networks

Later

 10^{2}

 \wedge

Feed-Forward

excitatory neuror inhibitory neuron

Toward a self-consistent model

- Sacha van Albada
- Maximilian Schmidt
- Rembrandt Bakker

- III. Cortico-cortical synapses
- **IV. External input represented by random input**
- V. Thalamic input

Mitglied der Helmholtz-Gemeinschaft

 10^{3}

0

Feed-Forward

excitatory neuro inhibitory neuro

▲ €

Multi-area model of macaque visual cortex

- rich anatomical data sets available (e.g CoCoMac)
- close to human
- 32 areas structured in layers comprising 8.10⁸ neurons
- downscaled model with 3.2.10⁶ neurons and 3.10¹⁰ synapses

architectural types provided by C. Hilgetag (private communication)

Cortico-cortical connectivity

Dynamical results

- Heterogeneous laminar firing patterns
- Rates in reasonable range (0.2 20 spikes/s)•
- Inhibitory rates > excitatory rates •
- Broad rate distributions

rate (spikes/s)

time (ms)

3000

6000

Ext. indegree

The mesoscopic scale

- parallel study
- network of 4mmx4mm covers size of 100 electrode Utah array
- spike correlation structure, LFP
- experimentally, formation and breakdown of waves observed in relation to behavior

320 280

120

120 160 200 240 280 Electrode X-Position (µm) about 1 million neurons with 10 billion synapses

requires supercomputing but not incredible resources

4 mm

Cm

Johanna Senk

Espen Hagen

Mitglied der Helmholtz-Gemeinschaft

Modeling for th

ıman Brai

connectivity

S Kunkel

brain area 10° neurons

with space Constant

utah arra

Simulation Technology: the NEST Initiative

collaborative effort and community building

IEST Initiative	🗱 🔀 Press Releases 2013 RIKEN 🛛 🐇 📥				
@ www.nest-in	nitiative.org/Software:About_NEST				
tost Visited *	Getting Started ThinkPad + Coffice + Collection - Takyo Travel + Convider + Collection - Collect				
	SUH				
ini	tiative				
	CIACIVE				
ANTET	Software: About NEST				
wnload NEST					
tures	Contents [hide]				
umentation	1 What is NEST7 2 How do Luse NEST2				
slications	3 Why should use NEST?				
Reporting bugs	4 Please cite NEST and tell us about your work				
	5 NEST logo for your poster or presentation				
sut us	6 System requirements				
Membership Activities Contact	What is NEST?				
	NEST is a simulator for spiking neural network models that focuses on the dynamics, size and structure of neural systems neurons.				
	NEST is ideal for networks of spiking neurons of any size, for example:				
impressum	1. Models of information processing e.g. in the visual or auditory cortex of mammals,				
	2. Models of network activity dynamics, e.g. laminar cortical networks or balanced random networks,				
	3. Models of learning and plasticity.				
	Learn more about NEST, its developers and its history on YouTube:				

Major goals:

systematically publish new simulation technology

produce public releases under GPL

- origins in 1994, collaboration of several labs (since 2001)
- registered society (since 2012)
- teaching in international advanced courses:
 - Okinawa Computational Neuroscience Course OCNC, Japan
 - Advanced Course in Computational Neuroscience ACCN, Europe
 - Latin American School on Computational Neuroscience LASCON, South America

Human Brain Project

e.g.: Morrison et al. (2005) Neural Computation Zaytsev, Morrison (2013) Frontiers in Neuroinformatics ¹⁷

Oct 2nd 2014, BrainScaleS, Heidelberg

www.nest-initiative.org

frontier	S Journals - Events - Jobs - Pe	ople – Videos – News – Blogs	•
About Submit Regist	ter Login	Search	
	TONTIER STATICS		
Info	ORIGINAL RESEARCH ARTICLE	Article Info	
Home	Share 0 Like 0 Comment 0 f in S 29 Share Altmetric 0	285 Views Abstract	
About	Front. Neuroinform., 02 November 2012 doi: 10.3389/fninf.2012.00026	Full Text	
Editorial Board	Supercomputers ready for use as	PDF	
Archive	discovery machines for neuroscier	Export Citation	
Research Topics	discovery machines for neuroscier	XML	
View Some Authors	Moritz Helias ^{1,2} *, Susanne Kunkel ^{1,3,4} , Gen Masumoto ⁵ , Ju	IN View Article Impa	act
Review Guidelines	Igarashi ⁶ , Jochen Martin Eppler ¹ , Shin Ishii ⁷ , Tomoki Fuka	The Authors in	
Subscribe to Alerts	Abigail Morrison ', ', '' and Markus Diesmann', ', ','	Frontiers	
Search	Institute of Neuroscience and Medicine (INM-6), Computational and Systems Neuroscience Julich, Germany	euroscience, Google	
Q	² RIKEN Brain Science Institute, Wako, Japan	Google Scholar	
Article Type	³ Simulation Laboratory Neuroscience - Bernstein Facility for Simulation and Dat Technology, Institute for Advanced Simulation, Jülich Aachen Research Alliance	abase .e. Jülich PubMed	
All	Research Centre, Jülich, Germany	Related Article	
Publication Date	 ⁵ Bernstein Center Freiburg, Albert-Ludwig University of Freiburg, Freiburg, Ge ⁵ High-Performance Computing Team, RIKEN Computational Science Research Pre- 	rmany ogram, Kobe, in Frontiers	

Mitglied der Helmholtz-Gemeinschaft

3rd generation simulation kernel

(released with NEST 2.2 in December 2012)

- up to 10⁸ neurons on K (and JUQUEEN)
- 11,250 synapses per neuron (exc-exc STDP)
- using up to MT=196,608 threads and T=8 threads per node
- 16 GB of memory per node

Helias M et al. (2012) Front. Neuroinform. 6:26.

Model of memory usage of NEST

describes the memory usage per MPI process

$$\mathcal{M}(M, T, N, K) = \mathcal{M}_0(M) + \mathcal{M}_n(M, N) + \mathcal{M}_c(M, T, N, K) \mathcal{M}_c(M, T, N, K) = TNm_c^0 + TN_c^{\emptyset}m_c^{\emptyset} + T(N - N^{\emptyset}) +$$

$$M, T, N, K) = TNm_{c}^{c} + TN_{c}^{c}m_{c}^{c}$$
$$+ T\left(N - N_{c}^{\emptyset}\right)m_{c}^{+}$$
$$+ K_{M}m_{c}$$

- M total number of MPI processes
- T number of threads per MPI process
- N total number of neurons
- K number of incoming connections per neuron

Kunkel S et al. (2012) *Front. Neuroinform.* **5**:35.

Previous connection infrastructure (3g)

from 10,000 nodes on collapse along 2 dimensions

Oct 2nd 2014, BrainScaleS, Heidelberg

3rd generation simulation kernel

analysis of contributions to total memory usage

 in the regime of 10k processes and beyond the inner data structure causes severe overhead

3rd generation simulation kernel

analysis of contributions to total memory usage

- adapt the model to account for short target lists
- potential solution: low-overhead data structure on supercomputers

New adaptive connection infrastructure (4g)

low overhead per synapse on supercomputers

full flexibility on laptops and moderately sized clusters

Mitglied der Helmholtz-Gemeinschaft

Comparison of 4g to 3g kernel

4th generation simulation kernel

- adaptive connection infrastructure with low overhead in case of short target lists
 - achieved by metaprogramming
 - no compromise on generality
- reduced memory usage of synapses
 - e.g. removed vtable pointers
 - no compromise on precision of synaptic state variables
- reduced setup time
- reduced simulation time

Maximum network size

- up to 5.73x10⁸ neurons on 229,376 cores of JUQUEEN
- up to 1.27x10⁹ neurons on 663,552 cores of K
- 11,250 synapses per neuron (exc-exc STDP)

- largest general network simulation performed on K 1.86x10⁹ neurons, 6000 synapses per neuron (press release July 2013: 1.73x10⁹)
- on JUQUEEN 1.08x10⁹ neurons, 6000 synapses per neuron

Runtime for a simulation of 1s

- between 8 and 41 min on JUQUEEN
- between 6 and 42 min on the K computer
- setting up the network takes between 3 and 15 min

- still not fast enough for studies of plasticity
- need to increase multi-threading

frontiers in NEUROINFORMATICS

in press

Spiking network simulation code for petascale computers

Susanne Kunkel, Maximilian Schmidt, Jochen Martin Eppler, Hans Ekkehard Vesser, Gen Masumoto, Jun Igarashi, Shin Ishii, Tomoki Fukai, Abigail Morrison, Markus Diesmann and Moritz Helias

Journal Name:	Frontiers in Neuroinformatics
ISSN:	1662-5196
Article type:	Original Research Article
First received on:	18 Jun 2014
Frontiers website link:	www.frontiersin.org

provides the evidence that neuroscience can exploit petascale systems

Iast paragraph of introduction:

This article concludes a co-development project for the K computer in Kobe, which started in 2008 (Diesmann, 2013). Preliminary results have been published in abstract form (Diesmann, 2012; Kunkel et al., 2013) and as a joint press release of the Jülich Research Centre and RIKEN (RIKEN BSI, 2013). The conceptual and algorithmic work described here is a module in our long-term collaborative project to provide the technology for neural systems simulations (Gewaltig & Diesmann, 2007).

Summary

- full-scale model explains prominent features of network activity
- is building block of further studies (<u>www.opensourcebrain.org</u>)
- need for brain-scale models
- require memory only available on supercomputers
- machines ready for use by neuroscience (<u>www.nest-initiative.org</u>)
- co-development phase was essential for petascale technology
- NEST is simulation engine of HBP at cellular and synaptic resolution
- exascale computers present new challenges for data structures
- exascale computers offer new opportunities for simulation speed