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Supercomputers: instruments for science or 
dinosaurs that haven’t gone extinct yet?



T. SchulthessBrainScaleS Conference, Heidelberg, October 2, 2014 2

Do you really mean dinosaurs?
We must be in the wrong movie
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Not much has changed since the late 1980s

• pick up any book on HPC from the early 
1990s, e.g. this on  from 1993 

• Shared-memory multiprocessors 
• cash coherency … 
• pipelining, SIMD, threading, … 

• Explicitly parallel languages (imperative 
programming) 

• Fortran 90 
• High Performance Fortran 
• Explicitly Parallel Programming 
Environment … (PVM) 

• … 
• No fundamental changes sind then!
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Incremental changes …

• Evolution of Fortran 
• Evolution of C++ – you can mention C++ at HPC conferences without 
being thrown out and template meta-programming is somewhat usable  

• PVM to MPI 
• OpenMP besides pthreads 
• PGAS languages (not sure how broadly accepted)

Only two potentially disruptive changes (in terms of broader acceptance) 

(1) Python – but not in HPC please! 
(2) CUDA with GPU – are you kidding me? 
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Maybe it is time to turn away from HPC, to Big Data?
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Big Data = Volume, Variety, Velocity, Veracity

Computer scientists tell us:

Many Big Data applications in science: 
> Life science: biological and genomic data, personalised health 
> Environmental science: remote and in-situ sensing, simulations 
> Social sciences: digital humanities, social media, economics & finance 
> Computer science: search, data integration, unstructured data analytics

data volume doubles every 2 years! analysis of unstructured data performance really matters!

In science, are you kidding?
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–Tycho Brahe, 1563

“I have studied all available charts of the planets and stars 
and none of them match the others. There are just as many 

measurements and methods as there are astronomers and all 
of them disagree. What is needed is a long-term project with 

the aim of mapping the heavens conducted from a single 
location over a period of several years.” 
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The first “BigData” project in history
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source: www.pafko.com/tycho/ 

http://www.pafko.com/tycho/
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Data given to Johannes Kepler
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source: www.pafko.com/tycho/ 

http://www.pafko.com/tycho/
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Kepler’s modelling and simulations
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M = E - ε sin E"
!

1. Solve  E(M)"(Numerics)!
2. Solve   φ(E) "(Geometry)
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After Kepler’s analysis and Newton’s theory …

10

source: www.pafko.com/tycho/ 

http://www.pafko.com/tycho/
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“Piz Daint”, CSCS ‘ new flagship system and one of 
Europe’s most powerful petascale supercomputers
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Presently the world’s most energy efficient petascale supercomputer!
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source: A. Fichtner, ETH Zurich
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Data from many stations and earthquakes
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source: A. Fichtner, ETH Zurich
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Very large simulations allow inverting large data sets in oder to 
generate high-resolution models of the earth’s mantle

1414

source: A. Fichtner, ETH Zurich
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vs	  [km/s]
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Theory (models) Experiment (data)

(1) Synthesis of models and data: recognising characteristic 
features of complex systems with calculations of limited 
accuracy (e.g. inverse problems) 

(2) Solving theoretical problems with high precision: 
complex structures emerge from simple rules (natural 
laws), more accurate predictions from “beautiful” theory 
(in the Penrose sense)

Pillars (paradigms?) of the scientific method

15

Mathematics / Simulation
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Mathematics / Simulation

Note the changing role of high-performance computing:  
HPC is now an essential tool for science, used by all scientists 
(for better or worse), rather than being limited to the domain of 

applied mathematics and providing numerical solution to 
theoretical problems only few understand
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The performance metric we should care about are
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Energy & Time
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How we should optimize
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Energy to solution (ETS):  
• energy is directly proportional to cost (power = energy / time) 
• given all operational constraints, energy should be minimised

Time to solution (TTS): 
• do we have to minimise time to solution? 
• no, it just needs to be good enough to meet operational constrains
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COSMO-2 in production at Meteo Swiss 
• Problem size (COSMO-2): 2km resolution on 540x314x60 grid points 
• Time to solution: 33h forecast must run in 39 minutes 
• Energy to solution: minimise (since always proportional to cost)

B. Results: Production Run

The implementation of COSMO on the GPU stores all
of the data fields in device memory, with direct GPU-to-
GPU MPI communication (G2G) for exchanging grid halos.
This approach avoids moving any fields between host and
device memory spaces, because the low arithmetic intensity of
the stencil kernels make hybrid computation impractical. The
drawback is that the dimension of the sub-domain on each
node is limited by the size of memory on the GPU, which
is relatively small compared to the amount of host memory
(6 GB compared to 32 GB on Piz Daint).

The computational grid for COSMO-2 has dimensions
540 ⇥ 314 grid points in the horizontal, and 60 grid points
in the vertical. The domain decomposition is performed on a
two dimensional Cartesian grid in the horizontal plane. The
maximum sub-domain dimensions that can be fit on a K20X
GPU with 6 GB of memory is 22500 vertical columns, which
corresponds to a two-dimensional decomposition of 150⇥150
grid points. The COSMO-2 domain has 161, 396 grid points
on a 514 ⇥ 314 grid, which imposes a minimum of 8 nodes
on Piz Daint.

The strong scaling comparison for the time to solution
using the CPU and GPU implementation of COSMO is given
in Fig. 1. The strong scaling is performed from 8 to 256 nodes
for 33 hours of simulated weather. According to the operational
requirements of MeteoSwiss, 33 hours should take no longer
than 39 minutes to simulate. The scaling behaviour of the two
versions of the code differ significantly.
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Fig. 1. Strong scaling of the time to solution for a 33 hour operational weather
forecasting simulation over Alps with COSMO-2. The dashed black line
indicates the maximum allowed time to solution for operational requirements.

The GPU implementation is the fastest of the two codes
for lower node counts, indeed with 8 nodes the 39 minute op-
erational requirement is comfortably met in 29’10”. However
the strong scaling only improves up to 32 nodes at 16’29”,
at 44% parallel efficiency, after which the time to solution
actually increases. With 32 and 64 nodes, each node has 5,504
and 2,752 grid columns respectively, and GPU code requires
a minimum of 4,096 grid columns per GPU, below this point
the device will be under-utilised and time to solution does
not improve (the reason for this will be investigated in depth
in Section IV-C). The increase in time to solution for more
than 32 nodes is caused by a combination of load imbalance,
to which the GPU version is more sensitive than the CPU

implementation, and IO routines upon which production runs
are dependent, that have not been optimized fully for GPUs.

The CPU code is 2.9 times slower with 8 nodes, with both
the 8 and 16 nodes taking over 44 and 85 minutes respectively,
exceeding the 39 minute operational threshold. However the
CPU code exhibits much better strong scaling, offering the
fastest time to solution for 64 or more nodes, and the fastest
time to solution of 5’35” with 256 nodes.

These results show that to minimize the time to solution
strong scaling of the CPU implementation should be employed.
However, there are a range of configurations that meet the sub
39 minute operational criteria, so we turn our attention to the
total energy to solution for each of the strong scaling runs.
We use Piz Daint’s power monitoring capabilities to measure
total energy to solution, measured using RUR (total energy
consumed by the job). Note that each run uses an additional
node to which IO is offloaded, i.e. the 8 node test uses 8 nodes
for computation plus 1 node for IO, which is also included in
the energy to solution.

The optimal run on the GPU sub-system that satisfies the
operational requirements for time to solution while minimising
energy to solution uses 8 nodes and 0.66 kWh. When running
on the CPU sub-system, about 20 nodes are required to
meet the operational requirements, using 2.2 kWh. Thus, the
GPU sub-system can meet the operational requirements while
requiring over 3 times less energy.
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Fig. 2. Energy to solution corresponding to the runs presented in Fig. 1.

The energy to solution increases with the number of nodes
for both the CPU and GPU sub-systems. However the 42-fold
increase for the GPU is far more pronounced than on the CPU
sub-system, which only increases 1.8 times.

The average power consumed during the time stepping
loop5 (which accounts for 99% of the time to solution) is plot-
ted in Fig. 3. With perfect strong scaling and constant power
on each node it is intuitive that the energy to solution should
remain constant as the number of nodes is increased. The
CPU implementations has reasonable strong scaling (though
not perfect), and the power per node changes very little, so the
net effect is a relatively small increase in energy to solution.

From Fig. 3 we see that the power consumed by the
compute nodes decreases as the amount of work on each GPU

5The pm counters interface was used to measure the energy used on each
compute node during the time stepping loop, from which the average power
consumption per computed node could then be calculated.
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The energy to solution increases with the number of nodes
for both the CPU and GPU sub-systems. However the 42-fold
increase for the GPU is far more pronounced than on the CPU
sub-system, which only increases 1.8 times.

The average power consumed during the time stepping
loop5 (which accounts for 99% of the time to solution) is plot-
ted in Fig. 3. With perfect strong scaling and constant power
on each node it is intuitive that the energy to solution should
remain constant as the number of nodes is increased. The
CPU implementations has reasonable strong scaling (though
not perfect), and the power per node changes very little, so the
net effect is a relatively small increase in energy to solution.

From Fig. 3 we see that the power consumed by the
compute nodes decreases as the amount of work on each GPU

5The pm counters interface was used to measure the energy used on each
compute node during the time stepping loop, from which the average power
consumption per computed node could then be calculated.

On GPUs: optimal run on 8 nodes with 0.66 kWh energy to solution
On CPUs: optimal run on 20 nodes with 2.2 kWh energy to solution
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Relationship between energy and consumed resources

21
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The energy to solution increases with the number of nodes
for both the CPU and GPU sub-systems. However the 42-fold
increase for the GPU is far more pronounced than on the CPU
sub-system, which only increases 1.8 times.

The average power consumed during the time stepping
loop5 (which accounts for 99% of the time to solution) is plot-
ted in Fig. 3. With perfect strong scaling and constant power
on each node it is intuitive that the energy to solution should
remain constant as the number of nodes is increased. The
CPU implementations has reasonable strong scaling (though
not perfect), and the power per node changes very little, so the
net effect is a relatively small increase in energy to solution.

From Fig. 3 we see that the power consumed by the
compute nodes decreases as the amount of work on each GPU

5The pm counters interface was used to measure the energy used on each
compute node during the time stepping loop, from which the average power
consumption per computed node could then be calculated.
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Fig. 7. Energy to solution as a function of node hours to solution for the
synthetic strong scaling with 160 ⇥ 128 global grid, along with the least
squares best fit using equation (3). Results are plotted for the new CPU
and GPU implementations, along with the original code currently used in
production.
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Fig. 8. Energy to solution as a function of node hours to solution for the
production COSMO-2 problem, along with the least squares best fit using
equation (3).

tabulated in Tables I and II respectively. The quality of the fit,
r2, is nearly perfect in all cases, as can be seen from the tables
as well.

arch ⇡ (kW) E0 (kJ) 1� r2

GPU 0.115 880.8 1.1 · 10�5

CPU 0.156 599.5 5.9 · 10�4

TABLE I. FITTING PARAMETERS FOR THE COSMO-2 OPERATIONAL
SCALING TEST.

Naturally, the parameter E0 is problem size dependent (it
is an extensive quantity just like the energy), and can be

arch ⇡ (kW) E0 (kJ) E1 (kJ) 1� r2

GPU 0.122 12.9 31.6 2.7 · 10�4

CPU 0.150 13.8 107.9 1.5 · 10�5

original 0.148 26.6 162.1 3.1 · 10�3

TABLE II. FITTING PARAMETERS FOR THE SYNTHETIC STRONG
SCALING TEST.

interpreted as a measure of the energy E1 it would take to
run the simulation on a single node, since

E0 = E1 � ⌧1⇡. (4)

The parameter ⇡ on the other hand is an intensive quantity that
can be interpreted as the additional power required per node,
when running the simulation on more than one node and its
scaling is not perfect. This can be seen if (3) is rewritten as

EN = E1 +N⌧N (1� PN )⇡ (5)

where PN = ⌧1
N⌧N

is the parallel efficiency of the simulation.
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Fig. 9. Scaling of parallel efficiency for original and new COSMO
implementation running on the CPU.

In order to further shed light on the meaning of the
parameter ⇡, we have included results for running the synthetic
benchmarks with the original COSMO code (i.e. the current
production version of the weather services), which have been
included in Fig. 7 and Table II. The refactored COSMO code
is considerably more efficient both in respect to ETS (see
Table II) and in TTS [15] than the original code. The parallel
efficiency plotted in Fig. 9 shows similar scaling behaviour
between the two implementations, albeit quantitatively differ-
ent - 1 � PN varies by 10% for 8 or more nodes - yet the
parameter ⇡ is almost identical for the two implementations.
On the other hand, when the refactored code is running on two
different architectures - the CPU vs. the GPU subsystems on
Piz Daint - the parameter ⇡ varies significantly.

Most importantly, however, the affine relationship between
ETS and NHS described by (3) or (5) provides the user a
straightforward way to minimise the energy consumed by a
simulation, without having to measure its power consumptions.
All a user needs is to measure time and minimises the
node-hours consumed by the simulation, given operational
constraints on other variable, such as time to solution.
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Fig. 7. Energy to solution as a function of node hours to solution for the
synthetic strong scaling with 160 ⇥ 128 global grid, along with the least
squares best fit using equation (3). Results are plotted for the new CPU
and GPU implementations, along with the original code currently used in
production.
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Fig. 8. Energy to solution as a function of node hours to solution for the
production COSMO-2 problem, along with the least squares best fit using
equation (3).

tabulated in Tables I and II respectively. The quality of the fit,
r2, is nearly perfect in all cases, as can be seen from the tables
as well.

arch ⇡ (kW) E0 (kJ) 1� r2

GPU 0.115 880.8 1.1 · 10�5

CPU 0.156 599.5 5.9 · 10�4

TABLE I. FITTING PARAMETERS FOR THE COSMO-2 OPERATIONAL
SCALING TEST.

Naturally, the parameter E0 is problem size dependent (it
is an extensive quantity just like the energy), and can be

arch ⇡ (kW) E0 (kJ) E1 (kJ) 1� r2

GPU 0.122 12.9 31.6 2.7 · 10�4

CPU 0.150 13.8 107.9 1.5 · 10�5

original 0.148 26.6 162.1 3.1 · 10�3

TABLE II. FITTING PARAMETERS FOR THE SYNTHETIC STRONG
SCALING TEST.

interpreted as a measure of the energy E1 it would take to
run the simulation on a single node, since

E0 = E1 � ⌧1⇡. (4)

The parameter ⇡ on the other hand is an intensive quantity that
can be interpreted as the additional power required per node,
when running the simulation on more than one node and its
scaling is not perfect. This can be seen if (3) is rewritten as

EN = E1 +N⌧N (1� PN )⇡ (5)

where PN = ⌧1
N⌧N

is the parallel efficiency of the simulation.
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Fig. 9. Scaling of parallel efficiency for original and new COSMO
implementation running on the CPU.

In order to further shed light on the meaning of the
parameter ⇡, we have included results for running the synthetic
benchmarks with the original COSMO code (i.e. the current
production version of the weather services), which have been
included in Fig. 7 and Table II. The refactored COSMO code
is considerably more efficient both in respect to ETS (see
Table II) and in TTS [15] than the original code. The parallel
efficiency plotted in Fig. 9 shows similar scaling behaviour
between the two implementations, albeit quantitatively differ-
ent - 1 � PN varies by 10% for 8 or more nodes - yet the
parameter ⇡ is almost identical for the two implementations.
On the other hand, when the refactored code is running on two
different architectures - the CPU vs. the GPU subsystems on
Piz Daint - the parameter ⇡ varies significantly.

Most importantly, however, the affine relationship between
ETS and NHS described by (3) or (5) provides the user a
straightforward way to minimise the energy consumed by a
simulation, without having to measure its power consumptions.
All a user needs is to measure time and minimises the
node-hours consumed by the simulation, given operational
constraints on other variable, such as time to solution.
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squares best fit using equation (3). Results are plotted for the new CPU
and GPU implementations, along with the original code currently used in
production.
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equation (3).
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can be interpreted as the additional power required per node,
when running the simulation on more than one node and its
scaling is not perfect. This can be seen if (3) is rewritten as
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In order to further shed light on the meaning of the
parameter ⇡, we have included results for running the synthetic
benchmarks with the original COSMO code (i.e. the current
production version of the weather services), which have been
included in Fig. 7 and Table II. The refactored COSMO code
is considerably more efficient both in respect to ETS (see
Table II) and in TTS [15] than the original code. The parallel
efficiency plotted in Fig. 9 shows similar scaling behaviour
between the two implementations, albeit quantitatively differ-
ent - 1 � PN varies by 10% for 8 or more nodes - yet the
parameter ⇡ is almost identical for the two implementations.
On the other hand, when the refactored code is running on two
different architectures - the CPU vs. the GPU subsystems on
Piz Daint - the parameter ⇡ varies significantly.

Most importantly, however, the affine relationship between
ETS and NHS described by (3) or (5) provides the user a
straightforward way to minimise the energy consumed by a
simulation, without having to measure its power consumptions.
All a user needs is to measure time and minimises the
node-hours consumed by the simulation, given operational
constraints on other variable, such as time to solution.

time to solution on N nodes

fitting parameters (for now)
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EN = ⇡0N⌧N + E0

Look at this in terms of single node energy E1 and time     to solution ⌧1

E0 = E1 � ⇡0⌧1

EN = E1 +N⌧N (1� PN )⇡0

Therefore:  - E0 is an effective dynamic energy 
                 - π0 is a an effective static power related to leakage losses

parallel efficiency

We can link energy and time to solution of a complex climate/weather 
simulation to the physics of the underlying computing system
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In conclusion

• Science needs high-performance computing and data processing 
• Data and computation are not separable in science 
• Time and energy to solution are the performance metrics that matter

Finally:

While traditional complexity analysis is useful for  
time to solution, we need a new mathematical ideas  

for optimisation of energy to solution
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Thank You!

Thomas Lippert for pointing out that Kepler did the first simulations in science 

Ben Cumming, Gilles Fourestey, and Raffaele Solcà for help with ETS analysis


