Memory and the statistical structure of the world

Samuel Gershman Department of Brain and Cognitive Sciences, MIT

July 2014

Marco Polo

Is this a funnylooking unicorn?

• When do we modify old memories, and when do we create new ones?

- When do we modify old memories, and when do we create new ones?
- This question can be answered within a probabilistic computational framework: we create new memories when we infer new latent causes in our environment

- When do we modify old memories, and when do we create new ones?
- This question can be answered within a probabilistic computational framework: we create new memories when we infer new latent causes in our environment
- This principle has deep explanatory power across multiple domains

Classical conditioning

Perceptual estimation

How many circles?

Reconstruction trial

Try to reconstruct the line you saw on the indicated trial

Reconstructive memory

What do animals learn during classical conditioning?

"It's that time of year when guys randomly explode."

Tone (a) causes shock (b)

Too constrained

Too constrained

Too flexible?

Too flexible?

Too flexible?

<u>Hypothesis</u>: Animals assume a generative model in which (1) the number of latent causes is unbounded, and (2) a small number of latent causes is more likely a *priori*.

Inverting the generative model

Bayes' rule inverts generative model to infer latent causes: P(cause | data) ~ P(data | cause)P(cause)

Case study: renewal

Acquisition (box A)

Case study: renewal

Acquisition (box A)

Extinction (box B)

Conditioned responding is renewed!

The rat hasn't unlearned its conditioned response; it has *learned something new*.

Acquisition

Acquisition

Extinction

Acquisition

Extinction

Clustering in the brain

Hippocampus supports the ability to flexibly infer new latent causes

Pre-training lesions of hippocampus abolish renewal

Pre-training lesions of hippocampus abolish renewal

Hippocampal lesions handicap the model's ability to infer new clusters

Gershman, Blei & Niv (2010), Psych Review

Why are memories hard to modify?

Relapse in classical conditioning

Spontaneous recovery

Myers & Davis (2002)

Prediction errors and learning

prediction error

Striatum

Substantia nigra

Hippotampus

Schultz (1998)

An alternative view: two roles for prediction error

Conditioned stimulus predicting reward

Conditioned stimulus predicting absence of reward

Known neutral stimulus

When errors are small: memory modification

Schultz (1998)

An alternative view: two roles for prediction error

Conditioned stimulus predicting reward

Conditioned stimulus predicting absence of reward

Known neutral stimulus

Schultz (1998)

When errors are small: memory modification

When errors are large: memory formation

How to erase a fear memory

 Prediction errors should be large enough to drive learning, but not so large that a new latent cause is inferred.

How to erase a fear memory

- Prediction errors should be large enough to drive learning, but not so large that a new latent cause is inferred.
- Titrate prediction errors by extinguishing gradually.

Reinstatement design

Gradual extinction in humans

Gradual extinction in humans

Predicting spontaneous recovery in humans

(partial reinforcement)

Gershman & Hartley (submitted)

Predicting spontaneous recovery in humans

(partial reinforcement)

Why do some people show a return of fear, and some don't?

Gershman & Hartley (submitted)

Predicting spontaneous recovery in humans

(partial reinforcement)

Model, fit only to conditioning & extinction data, divides subjects into two groups

Gershman & Hartley (submitted)

• Conditioning as clustering

- Conditioning as clustering
- Memories reflect inferences
 about latent causes

- Conditioning as clustering
- Memories reflect inferences about latent causes
- Gradual extinction prevents the return of fear

- Conditioning as clustering
- Memories reflect inferences about latent causes
- Gradual extinction prevents the return of fear
- Explaining individual differences in the return of fear

- When do we modify old memories, and when do we create new ones?
- This question can be answered within a probabilistic computational framework: we create new memories when we infer new latent causes in our environment
- This principle has deep explanatory power across multiple domains

Acknowledgments

Ken Norman (Princeton)

Yael Niv (Princeton)

David Blei (Princeton)

Marie Monfils (UT Austin)

Carolyn Jones (UT Austin) Cate Hartley (Sackler Institute) Liz Phelps (NYU)