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•  Classical conditioning 
 

•  Perceptual estimation 
 

•  Reconstructive memory 

How many circles?



What do animals learn during 
classical conditioning? 



“It’s that time of year when guys randomly explode.” 
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... Hypothesis: Animals assume a generative model in which (1) 
the number of latent causes is unbounded, and (2) a small 
number of latent causes is more likely a priori. 



Inverting the generative model 

Bayes’ rule inverts generative model to infer latent causes: 
     P(cause|data) ∝ P(data|cause)P(cause) 

 
 
 
 
 
 

Generative 
process 

Inference  
(Bayes’ rule) 



Conditioning as 
clustering 
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Conditioned responding is 
renewed! 

(Bouton & Bolles, 1979) 

The rat hasn’t unlearned its conditioned response; it 
has learned something new. 

Acquisition Extinction 
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Clustering in the brain 

Hippocampus supports the ability to flexibly 
infer new latent causes 
 



Pre-training lesions of 
hippocampus abolish renewal 

Ji & Maren (2005) 
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Pre-training lesions of 
hippocampus abolish renewal 

Hippocampal lesions handicap the 
model’s ability to infer new clusters 

Ji & Maren (2005) 

Gershman, Blei & Niv (2010), Psych Review 

control	   hippocampal	  
lesion	  

control	   hippocampal	  
lesion	  



Why are memories hard to 
modify? 



Relapse in classical conditioning 

Myers & Davis (2002) 



Prediction errors and learning 

Rescorla-Wagner model 

V ← V + η[outcome – V] 

prediction error 

Schultz (1998) 



An alternative view: two roles for 
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An alternative view: two roles for 
prediction error 

When errors are small: 
memory modification 

When errors are large: 
memory formation 

Schultz (1998) 
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How to erase a fear memory 

•  Prediction errors should be large 
enough to drive learning, but not so 
large that a new latent cause is 
inferred. 

•  Titrate prediction errors by 
extinguishing gradually. 



Testing the model: gradual 
extinction 

acquisition 

gradual 
extinction 

gradual 
reverse 

extinction 

regular 
extinction 



Gershman, Jones, Norman, Monfils & Niv (2013) 

Conditioning 
(3 trials) 
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Long-term 
memory test 

(4 trials) 24 hours 

Spontaneous 
recovery 
(4 trials) 30 days 
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Predicting spontaneous 
recovery in humans 

Gershman & Hartley 
(submitted) 
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Conditioning Extinction 
24 hours 

Spontaneous recovery 
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Why do some people show a 
return of fear, and some don’t? 

(partial reinforcement) 



Predicting spontaneous 
recovery in humans 

Gershman & Hartley 
(submitted) 

Conditioning Extinction 
24 hours 

Spontaneous recovery 

Model, fit only to conditioning & extinction 
data, divides subjects into two groups 

(partial reinforcement) 
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One state
Two state
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•  Conditioning as clustering 
 
•  Memories reflect inferences 

about latent causes 
 
•  Gradual extinction prevents 

the return of fear 

•  Explaining individual 
differences in the return of 
fear 

Summary 
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