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How many circles?

Reconstruction trial

Try to reconstruct the line you
saw on the indicated trial
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e Reconstructive memory




What do animals learn during
classical conditioning?
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“It's that time of year when guys randomly explode.”



Some possibilities

Tone (a) causes
shock(b)
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Too flexible?¢

Hypothesis: Animals assume a generative model in which (1)

the number of latent causes is unbounded, and (2) a small
number of latent causes is more likely a priori.




Inverting the generative model

Bayes' rule inverts generative model to infer latent causes:
P(cause |data) « P(data | cause)P(cause)

Vilwi ¥ |
Generative Inference
process (Bayes' rule)
YV




Conditioning as
clustering




Case study: renewal

Acquisition (box A)
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Conditioned responding s

renewed!
Experimental data
0.8 ' ' '
o (Bouton & Bolles, 1979)
Acquisition  Extinction ©
-
O
7))
w
o
Q.
Q.
-
n

The rat hasn’t unlearned its conditioned response; it
has learned something new.
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Acquisition Extinction Test



Acquisition Extinction Test



Clustering in the brain

Hippocampus supports the abillity to flexibly
INnfer new latent causes
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Pre-training lesions of

hippocampus abolish renewal

Suppression ratio
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Experimental data
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Conditioned response

control hippocampal
lesion

Hippocampal lesions handicap the
model’s ability to infer new clusters

Gershman, Blei & Niv (2010), Psych Review



Why are memories hard to
modifye
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Relapse in classical conditioning

Spontaneous recovery

Acquisiton ~ Extinction Retention Test
|

|
|
|
1
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Measure of CR

Trials Immed 2hrs 24hrs

Myers & Davis (2002)



Prediction errors and learning

Conditioned stimulus
predicting reward

Rescorla-Wagner model

(
Conditioned stimulus v — V i n [OUTcome — V]

predicting absence of reward \ J

rediction error
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Known neutral stimulus
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An alternative view: two roles for
orediction error ‘

Conditioned stimulus
predicting reward

When errors are small: a_
memory modification i%

Conditioned stimulus
predicting absence of reward

Known neutral stimulus
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An alternative view: two roles for
orediction error

Conditioned stimulus
predicting reward

When errors are small:
memory modification

Conditioned stimulus
predicting absence of reward

Known neutral stimulus

When errors are large:
memory formation

05s

Schultz (1998) %5 2




How to erase a fear memory

* Prediction errors should be large
enough to drive learning, but not so
large that a new latent cause is
inferred.



How to erase a fear memory

* Prediction errors should be large
enough to drive learning, but not so
large that a new latent cause is

iInferred.

 Tifrate prediction errors by
extinguishing gradually.



Testing the model: gradual

extinction
acquisifion extinction
Y // 2 2 S S
extinction

gradual
reverse
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Conditionin Extinction Long-ferm Spontaneous
o ? —> | memory test | —> recovery

3 trials 24 trials
( ) 24 hours| | ) |24 hours (4 trils) 30 days (4 trials)

Gershman, Jones, Norman, Monfils & Niv (2013)
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Standard Gradual Reverse

Gershman, Jones, Norman, Monfils & Niv (2013)
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Gershman, Jones, Norman, Monfils & Niv (2013)



Conditioning
(3 trials)

24 hours

Reinstatement design

Extinction
(24 trials)

24 hours

Reinstatement
(2 trials)

—_—
24 hours

Reinstatement
Test
(4 trials)

Gershman, Jones, Norman, Monfils & Niv (2013)




Reinstatement design

e T ; Reinstatement
Conditioning | 5 Eéjnfc'h?n S Relrg?r;rglgem : Test
(3 trials) 24 hours| (24 1rials) {24 hours 24 hours (4 trials)

—
o

o

Test — Ext freezing (%)
N
o

LN
=

Standard Gradual Reverse

Gershman, Jones, Norman, Monfils & Niv (2013)



Gradual extinction iIn humans



Gradual extinction in humans
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Predicting spontaneous
recovery in humans

Condifioning

—

(partial reinforcement)

Extinction

T
24 hours

Spontaneous recovery

Gershman & Hartley
(submitted)



Predicting spontaneous
recovery in humans

Condifioning

—

(partial reinforcement)

Extinction

—_
24 hours

Why do some people show a
return of fear, and some don’t?

Spontaneous recovery

Frequency

91 -0.5 0 0.5 1
Spontaneous Recovery

Gershman & Hartley
(submitted)



Predicting spontaneous
recovery in humans

Conditioning | ———| Extinction | ———> | Spontaneous recovery

24 hours
(partial reinforcement)
, nAcquisition , oEXtinction , ,Recall
=->=One state
1 |-=Two state] | 1] * 1/
S S S
. 0.8; | & 0.8 | & 0.8
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3 G &
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Block Block Block
Model, fit only to conditioning & extinction Gershman & Hartley

data, divides subjects into two groups (submitted)
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« Gradual extinction prevents
the return of fear
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Summary

Conditioning as clustering

Memories reflect inferences
about latent causes
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Gradual exfinction prevents

the return of fear
differences in the return of
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